|
|
SiC/2009Al复合材料的变形加工参数的优化仿真研究 |
马凯1,2,张星星1,王东1,王全兆1,刘振宇1,肖伯律1( ),马宗义1 |
1. 中国科学院金属研究所沈阳材料科学国家研究中心 沈阳 110016 2. 中国科学技术大学材料科学与工程学院 沈阳 110016 |
|
Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites |
MA Kai1,2,ZHANG Xingxing1,WANG Dong1,WANG Quanzhao1,LIU Zhenyu1,XIAO Bolv1( ),MA Zongyi1 |
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
Kai MA,
Xingxing ZHANG,
Dong WANG,
Quanzhao WANG,
Zhenyu LIU,
Bolv XIAO,
Zongyi MA.
Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. Acta Metall Sin, 2019, 55(10): 1329-1337.
[1] | Lloyd D J. Particle reinforced aluminium and magnesium matrix composites [J]. Int. Mater. Rev., 1994, 39(1): 1 | [2] | Tjong S C. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties [J]. Adv. Eng. Mater., 2007, 9: 639 | [3] | Ramnath B V, Elanchezhian C, Annamalai R M ,et al. Aluminium metal matrix composites—A review [J]. Rev. Adv. Mater. Sci., 2014, 38: 55 | [4] | Tham L M, Gupta M, Cheng L. Effect of reinforcement volume fraction on the evolution of reinforcement size during the extrusion of Al-SiC composites [J]. Mater. Sci. Eng., 2002, A326: 355 | [5] | Li H Z, Wang H J, Zeng M ,et al. Forming behavior and workability of 6061/B4CP composite during hot deformation [J]. Compos. Sci. Technol., 2011, 71: 925 | [6] | Liu Z Y, Wang Q Z, Xiao B L, et al. Effects of double extrusion on the microstructure and tensile property of the PM processed SiCp/2009Al composites [J]. Acta Metall. Sin., 2010, 46: 1121 | [6] | (刘振宇, 王全兆, 肖伯律等. 二次挤压对SiCp/2009Al复合材料微观结构和力学性能的影响 [J]. 金属学报, 2010, 46: 1121) | [7] | Xiao B L, Huang Z Y, Ma K, et al. Research on hot deformation behaviors of discontinuously reinforced aluminum composites [J]. Acta Metall. Sin., 2019, 55: 59 | [7] | (肖伯律, 黄治冶, 马 凯等. 非连续增强铝基复合材料的热变形行为研究进展 [J]. 金属学报, 2019, 55: 59) | [8] | Kim H Y, Hong S H. High temperature deformation behavior of 20vol.% SiCw2024Al metal matrix composite [J]. Scr. Metall. Mater., 1994, 30: 297 | [9] | Huang H Y, Fan G L, Tan Z Q ,et al. Superplastic behavior of carbon nanotube reinforced aluminum composites fabricated by flake powder metallurgy [J]. Mater. Sci. Eng., 2017, A699: 55 | [10] | Mabuchi M, Higashi K, Inoue K ,et al. Experimental investigation of superplastic behavior in a 20vol% Si3N4p5052 aluminum composite [J]. Scr. Mater., 1992, 26: 1839 | [11] | Huang Z Y, Zhang X X, Xiao B, et al. Hot deformation mechanisms and microstructure evolution of SiCp/2014Al composite [J]. J. Alloys Compd., 2017, 722: 145 | [12] | Shao J C, Xiao B L, Wang Q Z ,et al. Constitutive flow behavior and hot workability of powder metallurgy processed 20vol.%SiCP/2024Al composite [J]. Mater. Sci. Eng., 2010, A527: 7865 | [13] | Mokdad F, Chen D L, Liu Z Y ,et al. Three-dimensional processing maps and microstructural evolution of a CNT-reinforced Al-Cu-Mg nanocomposite [J]. Mater. Sci. Eng., 2017, A702: 425 | [14] | Kai X Z, Zhao Y T, Wang A D ,et al. Hot deformation behavior of in situ nano ZrB2 reinforced 2024Al matrix composite [J]. Compos. Sci. Technol., 2015, 116: 1 | [15] | Kim W J. The size effect of SiC particulates on activation energy for superplastic flow in a 2124 Al metal matrix composite [J]. Scr. Mater., 1999, 41: 1131 | [16] | Shi C J, Chen X G. Evolution of activation energies for hot deformation of 7150 aluminum alloys with various Zr and V additions [J]. Mater. Sci. Eng., 2016, A650: 197 | [17] | Huang Z Y, Zhang X X, Yang C, et al. Abnormal deformation behavior and particle distribution during hot compression of fine-grained 14vol% SiCp/2014Al composite [J]. J. Alloys Compd., 2018, 743: 87 | [18] | Zhang Z J, Dai G Z, Wu S N ,et al. Simulation of 42CrMo steel billet upsetting and its defects analyses during forming process based on the software DEFORM-3D [J]. Mater. Sci. Eng., 2009, A499: 49 | [19] | Sornin D, Karch A, Nunes D. Finite element method simulation of the hot extrusion of a powder metallurgy stainless steel grade [J]. Int. J. Mater. Forming, 2015, 8: 145 | [20] | Chen J F, Yan M F, Wang X R. 3D FEM simulation of hot extrusion process of AerMet100 steel [J]. Trans. Mater. Heat Treat., 2007, 28(S1): 367 | [20] | (陈俊锋, 闫牧夫, 汪向荣. AerMet100钢热挤压变形过程数值模拟 [J]. 材料热处理学报, 2007, 28(S1): 367) | [21] | Zhou L, Huang Z Y, Wang C Z ,et al. Constitutive flow behaviour and finite element simulation of hot rolling of SiCp/2009Al composite [J]. Mech. Mater., 2016, 93: 32 | [22] | Zhou L, Wang C Z, Zhang X X ,et al. Finite element simulation of hot rolling process for SiCp/Al composites [J]. Acta Metall. Sin., 2015, 51: 889 | [22] | (周 丽, 王唱舟, 张星星等. SiCp/Al复合材料热轧过程的有限元模拟 [J]. 金属学报, 2015, 51: 889) | [23] | Liu Y, Shao J C, Ding L ,et al. Finite element simulation and analysis of 12 vol%SiCP/2024Al matrix composites for hot extrusion process [J]. Acta. Mater. Compos. Sin., 2009, 26(5): 167 | [23] | (刘 越, 邵军超, 丁 莉等. 12vol%SiCP/2024Al基复合材料热挤压过程有限元模拟与分析 [J]. 复合材料学报, 2009, 26(5): 167) | [24] | Zhang J F, Zhang X X, Wang Q Z, et al. Simulations of deformation and damage processes of SiCp/Al composites during tension [J]. J. Mater. Sci. Technol., 2018, 34: 627 | [25] | McQueen H J, Blum W. Dynamic recovery: Sufficient mechanism in the hot deformation of Al (<99.99) [J]. Mater. Sci. Eng., 2000, A290: 95 | [26] | Sun Y L, Xie J P, Hao S M ,et al. Dynamic recrystallization model of 30%SiCp/Al composite [J]. J. Alloys Compd., 2015, 649: 865 | [27] | Yang Q Y, Deng Z H, Zhang Z Q, et al. Effects of strain rate on flow stress behavior and dynamic recrystallization mechanism of Al-Zn-Mg-Cu aluminum alloy during hot deformation [J]. Mater. Sci. Eng., 2016, A662: 204 | [28] | Kim W J, Hong S H. High-strain-rate superplastic deformation behavior of a powder metallurgy-processed 2124 Al alloy [J]. J. Mater. Sci., 2000, 35: 2779 | [29] | Du N N, Bower A F, Krajewski P E, et al. The influence of a threshold stress for grain boundary sliding on constitutive response of polycrystalline Al during high temperature deformation [J]. Mater. Sci. Eng., 2008, A494: 86 | [30] | Lagneborg R, Bergman B. The stress/creep rate behaviour of precipitation-hardened alloys [J]. Met. Sci., 1976, 10: 20 | [31] | Kaibyshev R, Kazyhanov V, Musin F. Hot plastic deformation of aluminium alloy 2009-15%SiCw composite [J]. Mater. Sci. Technol., 2002, 18: 777 | [32] | Mishra R S, Bieler T R, Mukherjee A K. Mechanism of high strain rate superplasticity in aluminium alloy composites [J]. Acta Mater., 1997, 45: 561 | [33] | Wierzbicki T, Bao Y B, Lee Y W, et al. Calibration and evaluation of seven fracture models [J]. Int. J. Mech. Sci., 2005, 47: 719 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|