Please wait a minute...
金属学报  2019, Vol. 55 Issue (10): 1338-1348    DOI: 10.11900/0412.1961.2019.00047
  本期目录 | 过刊浏览 |
低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为
白杨1,2,王振华3,李相波3,李焰1()
1. 中国石油大学(华东)材料科学与工程学院 青岛 266580
2. 海洋化工研究院有限公司海洋涂料国家重点实验室 青岛 266071
3. 海洋腐蚀与防护重点实验室中船重工七二五所 青岛 266237
Corrosion Behavior of Al(Y)-30%Al2O3 Coating Fabricated by Low Pressure Cold Spray Technology
BAI Yang1,2,WANG Zhenhua3,LI Xiangbo3,LI Yan1()
1. School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, China
2. State Key Laboratory of Marine Coatings, Marine Chemical Research Institute Co. , Ltd. , Qingdao 266071, China
3. State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China
引用本文:

白杨, 王振华, 李相波, 李焰. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为[J]. 金属学报, 2019, 55(10): 1338-1348.
Yang BAI, Zhenhua WANG, Xiangbo LI, Yan LI. Corrosion Behavior of Al(Y)-30%Al2O3 Coating Fabricated by Low Pressure Cold Spray Technology[J]. Acta Metall Sin, 2019, 55(10): 1338-1348.

全文: PDF(22314 KB)   HTML
摘要: 

采用低压冷喷涂技术在Q235碳钢基体上制备了不同稀土元素(Y)添加量的Al(Y)-30%Al2O3 (体积分数)复合涂层。结合SEM、XRD、FTIR等材料分析测试手段,采用开路电位、交流阻抗、动电位极化等电化学测试方法对涂层的腐蚀行为进行了研究。通过考察不同稀土元素(Y)添加含量对涂层微观组织和腐蚀电化学行为的影响,研究复合涂层的腐蚀机制。结果表明:添加适量的Y元素可以提高涂层的耐蚀性能,加入量过少,Y作用不明显;加入量过多,涂层的耐蚀性有所下降;当Y添加量为0.2% (质量分数)时,涂层的耐蚀性比Al-30%Al2O3涂层提高了1个数量级;Al(Y)-30%Al2O3涂层的腐蚀过程包括:表层均匀腐蚀、界面侵蚀-渗透扩散、局部腐蚀、腐蚀抑制4个阶段。

关键词 低压冷喷涂铝基复合涂层电化学阻抗谱腐蚀行为    
Abstract

Low-pressure cold spray technology (LPCS) is a new type of surface treatment technology. Compared with the conventional thermal sprayed aluminum coating, the LPCS aluminum coating has the advantages of a low degree of oxidation, high density and good resistance to uniform corrosion. However, the inert aluminum coating is not stable in marine environment, it is prone to localized corrosion, which leads to coating failure. Therefore, in order to solve the key common problems of corrosion, which are common in offshore oil and gas equipments, such as deep-sea drilling rigs, platforms and on-line storage and offloading devices, the corrosion resistance performance of the low pressure cold sprayed Al(Y)-30%Al2O3 (volume fraction) composite coatings were carried out. In this work, Al(Y)-30%Al2O3 composite coating with different rare earth elements (Y) was prepared on the Q235 carbon steel substrate by low pressure cold spray technology, aiming to improve the local corrosion resistance performance of aluminum coating in marine environment. The effects of Y addition on the corrosion behavior of Al(Y)-30%Al2O3 coating with different Y contents (mass fraction: 0.05%, 0.1%, 0.2%, 0.5%) were studied by electrochemical measurements and microstructural analysis. The corrosion mechanism of the composite coating was elucidated. The results show that the addition of an appropriate amount of Y element is very important to improve the corrosion resistance of the coating; whether the addition amount of Y is too low or too high, the improvement can be negligible or even negative; the optimal amount of Y is 0.2% (mass fraction), by which the corrosion resistance of the coating is one order of magnitude higher than that of Al-30%Al2O3 coating; the corrosion process of Al(Y)-30%Al2O3 coating includes four stages: the surface uniform corrosion, the interfacial erosion-infiltration diffusion, the localized corrosion and the corrosion inhibition.

Key wordslow pressure cold spray    aluminum matrix composite coating    electrochemical impedance spectroscopy    corrosion behavior
收稿日期: 2019-02-22     
ZTFLH:  TG174  
基金资助:中央高校基本科研专项资金项目(18CX05021A);山东省重点研发计划项目(2017GHY15108);青岛市博士后应用研究项目
作者简介: 白 杨,女,1990年生,工程师,博士
图1  不同Y含量Al(Y)-30% Al2O3 (体积分数)涂层的表面形貌
图2  不同Y含量Al(Y)-30%Al2O3涂层的截面形貌
图3  不含和含0.1%Y的Al(Y)-30% Al2O3涂层横截面抛光刻蚀后的SEM像
图4  不同Y含量Al(Y)-30% Al2O3涂层随浸泡时间的开路电位(Eocp)变化曲线
图 5  不同Y含量Al(Y)-30%Al2O3涂层在海水中浸泡不同时间的Nyquist图
图 6  不同Y含量Al(Y)-30%Al2O3涂层在海水中浸泡不同时间的Bode图
图7  不同Y含量Al(Y)-30%Al2O3涂层在海水中浸泡720 h的EIS
图8  不同Y添加量Al(Y)-30%Al2O3涂层在海水中浸泡720 h后的动电位极化曲线

Mass fraction of Y

%

Ecorr (vs SCE)

V

icorr

μA·cm-2

βa

mV·dec-1

βc

mV·dec-1

0-0.78571.758998.13-132.77
0.05-0.73340.587954.06-117.82
0.1-0.74320.3719130.59-131.46
0.2-0.76970.3473158.16-126.88
0.5-0.76641.203970.97-122.85
表1  不同Y添加量Al(Y)-30%Al2O3涂层在海水中浸泡720 h后的动电位极化拟合结果
图9  Al(Y)-30% Al2O3涂层在海水中浸泡1440 h后的XRD谱
图10  浸泡前和在海水中浸泡1440 h后Al(Y)-30%Al2O3涂层腐蚀表面元素分布
图11  在海水中浸泡1440 h后Al(Y)-30%Al2O3涂层表面腐蚀产物的Fourier红外光谱
图12  Al(Y)-30%Al2O3涂层在海水中浸泡1440 h后腐蚀表面的SEM像
图13  低压冷喷涂Al(Y)- 30%Al2O3涂层的腐蚀机制示意图
[1] Assadi H, Kreye H, G?rtner F ,et al. Cold spraying-A materials perspective [J]. Acta Mater., 2016, 116: 382
[2] Wang C L, Yang S, Ma B, et al. Cold spray technology and its application in parts renewal and preparation of functional coating [J]. Weld. Technol., 2013, 42(8): 1
[2] (王存龙, 杨 森, 马 冰等. 冷喷涂技术及其在零件修复与功能涂层制备中的应用 [J]. 焊接技术, 2013, 42(8): 1)
[3] Irissou E, Legoux J G, Arsenault B ,et al. Investigation of Al-Al2O3 cold spray coating formation and properties [J]. J. Therm. Spray Technol., 2007, 16: 661
[4] Rokni M R, Nutt S R, Widener C A ,et al. Review of relationship between particle deformation, coating microstructure, and properties in high-pressure cold spray [J]. J. Therm. Spray Technol., 2017, 26: 1308
[5] Melendez N M, Narulkar V V, Fisher G A ,et al. Effect of reinforcing particles on the wear rate of low-pressure cold-sprayed WC-based MMC coatings [J]. Wear, 2013, 306: 185
[6] Spencer K, Fabijanic D M, Zhang M X. The influence of Al2O3 reinforcement on the properties of stainless steel cold spray coatings [J]. Surf. Coat. Technol., 2012, 206: 3275
[7] Shockley J M, Descartes S, Vo P, et al. The influence of Al2O3 particle morphology on the coating formation and dry sliding wear behavior of cold sprayed Al-Al2O3 composites [J]. Surf. Coat. Technol., 2015, 270: 324
[8] Shockley J M, Descartes S, Irissou E ,et al. Third body behavior during dry sliding of cold-sprayed Al-Al2O3 composites: In situ tribometry and microanalysis [J]. Tribol. Lett., 2014, 54: 191
[9] Winarto W, Priadi D, Sofyan N ,et al. Wear resistance and surface hardness of carbon nanotube reinforced alumina matrix nanocomposite by cold sprayed process [J]. Procedia Eng., 2017, 170: 108
[10] Tao Y S, Xiong T Y, Sun C ,et al. Effect of α-Al2O3 on the properties of cold sprayed Al/α-Al2O3 composite coatings on AZ91D magnesium alloy [J]. Appl. Sur. Sci., 2009, 256: 261
[11] Peat T, Galloway A, Toumpis A, et al. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying [J]. Appl. Sur. Sci., 2017, 396: 1623
[12] Bai X M, Tang J Q, Gong J M ,et al. Corrosion performance of Al-Al2O3 cold sprayed coatings on mild carbon steel pipe under thermal insulation [J]. Chin. J. Chem. Eng., 2017, 25: 533
[13] Liang X B, Zhang Z B, Chen Y X, et al. Study on Al-based amorphous and nanocrystalline composite coating [J]. Acta Metall. Sin., 2012, 48: 289
[13] (梁秀兵, 张志彬, 陈永雄等. 铝基非晶纳米晶复合涂层研究 [J]. 金属学报, 2012, 48: 289)
[14] Luo L, Shen Y F, Li B ,et al. Preparation and oxidation behavior of alu-minized coating on TC4 titanium alloy via friction stir lap welding method [J]. Acta Metall. Sin., 2013, 49: 996
[14] (骆 蕾, 沈以赴, 李 博等. 搅拌摩擦焊搭接法制备TC4钛合金表面Al涂层及其高温氧化行为 [J]. 金属学报, 2013, 49: 996)
[15] Su F, Zhang P Z, Wei D B ,et al. Corrosion behavior of hot-dip Al-Zn coating doped with Si, RE, and Mg during exposure to sodium chloride containing environments [J]. Mater. Corros., 2018, 69: 714
[16] Ma J L, Wen J B, Li G X ,et al. The corrosion behaviour of Al-Zn-In-Mg-Ti alloy in NaCl solution [J]. Corros. Sci., 2010, 52: 534
[17] Liu Z, Xu H Q, Zhi W ,et al. Mechanical properties and corrosion behavior of Al/SiC composites [J]. J. Alloys Compd., 2016, 678: 23
[18] Che X, Liang X K, Chen L L ,et al. Microstructures and low-cycle fatigue behavior of Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) alloy[J]. Acta Metall. Sin., 2014, 50: 1046
[18] (车 欣, 梁兴奎, 陈丽丽等. Al-9.0%Si-4.0%Cu-0.4%Mg (-0.3%Sc)合金的显微组织及其低周疲劳行为 [J]. 金属学报, 2014, 50: 1046)
[19] Liu W, Li Q, Li M C. Corrosion behaviour of hot-dip Al-Zn-Si and Al-Zn-Si-3Mg coatings in NaCl solution [J]. Corros. Sci., 2017, 121: 72
[20] Wang K. Corrosion behavior of cold-sprayed aluminum and zinc/aluminum coatings serviced in marine atmosphere environment [D]. Jinan: Shandong University, 2011
[20] (王 凯. 冷喷涂铝及铝锌涂层海洋大气腐蚀行为研究 [D]. 济南: 山东大学, 2011)
[21] Jiang Q, Miao Q, Liang W P, et al. Corrosion behavior of arc sprayed Al-Zn-Si-RE coatings on mild steel in 3.5 wt% NaCl solution [J]. Electrochim. Acta, 2014, 115: 644
[22] Tao Y S, Xiong T Y, Sun C ,et al. Microstructure and corrosion performance of a cold sprayed aluminium coating on AZ91D magnesium alloy [J]. Corros. Sci., 2010, 52: 3191
[23] Dong C F, Fu A Q, Li X G ,et al. Localized EIS characterization of corrosion of steel at coating defect under cathodic protection [J]. Electrochim. Acta, 2008, 54: 628
[24] Fu D X. Study on the synergy effect between Zn-Al-Mg-RE coating and ship paint and anticorrosion mechanism of the composite coatings [D]. Harbin: Harbin Engineering University, 2007
[24] (付东兴. Zn-Al-Mg-RE涂层与舰船涂料的协同性及其构建的复合涂层的耐蚀机理研究 [D]. 哈尔滨: 哈尔滨工程大学, 2007)
[25] Li T, Li X G, Dong C F ,et al. Initial corrosion behavior of LC4 aluminum alloy in tropical maritime environment [J]. J. Univ Sichuan. (Nat Sci. Ed.), 2010, 47: 1388
[25] (李 涛, 李晓刚, 董超芳等. LC4铝合金在热带海洋大气环境中的早期腐蚀行为 [J]. 四川大学学报(自然科学版), 2010, 47: 1388)
[26] Wang Z Y, Li Q X, Wang C, et al. Corrosion behaviors of Al alloy LC4 in Geermu salt lake atmosphere [J]. Chin. J. Nonferrous Met., 2007, 17: 24
[26] (王振尧, 李巧霞, 汪 川 ,等. LC4铝合金在格尔木盐湖大气环境中的腐蚀行为 [J]. 中国有色金属学报, 2007, 17: 24)
[27] Nyquist R A, Kagel R O. Infrared Spectra of Inorganic Compounds (3800-45cm-1) [M]. New York: Academic Press, 1971: 1
[28] He J G, Wen J B, Sun L M ,et al. Characterization of pitting behavior of pure Al and Al-7Zn-0.1Sn-0.015Ga alloy by cyclic polarization technique [J]. Corros. Sci. Prot. Technol., 2015, 27: 449
[28] (贺俊光, 文九巴, 孙乐民等. 用循环极化曲线研究Al和铝合金的点蚀行为 [J]. 腐蚀科学与防护技术, 2015, 27: 449)
[29] Davoodi A, Pan J, Leygraf C ,et al. Integrated AFM and SECM for in situ studies of localized corrosion of Al alloys [J]. Electrochim. Acta, 2007, 52: 7697
[30] Wu L W. Investigation on microstructure and properties of Al, Ti-Al-N, Al/Ti-Al-N films fabricated on AZ91D magnesium alloy by magnetron sputtering [D]. Zhenjiang: Jiangsu University of Science and Technology, 2011
[30] (吴良文. AZ91D镁合金表面磁控溅射Al、Ti-Al-N、Al/Ti-Al-N膜及其组织与性能研究 [D]. 镇江: 江苏科技大学, 2011)
[31] Zhu Z X, Zhang J, Xu B S. Effect of RE on anti-corrosion mechanism of arc sprayed Zn-Al-Mg coatings [J]. Adv. Mater. Res., 2011, 282-283: 279
[1] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[2] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[3] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[4] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[5] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[6] 张苏强,赵洪运,舒凤远,王国栋,贺文雄. 焊接热循环对Q315NS钢在H2SO4溶液中腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 808-816.
[7] 万红霞,宋东东,刘智勇,杜翠薇,李晓刚. 交流电对X80钢在近中性环境中腐蚀行为的影响[J]. 金属学报, 2017, 53(5): 575-582.
[8] 韩林原, 李旋, 储成林, 白晶, 薛烽. 流场环境中AZ31镁合金的腐蚀行为研究[J]. 金属学报, 2017, 53(10): 1347-1356.
[9] 韦天国,林建康,龙冲生,陈洪生. 蒸汽中的溶解氧对锆合金腐蚀行为的影响*[J]. 金属学报, 2016, 52(2): 209-216.
[10] 魏仁超, 许凤玲, 蔺存国, 唐晓, 李焰. 远青弧菌、硫酸盐还原菌及其混合菌种作用下 B10合金的海水腐蚀行为[J]. 金属学报, 2014, 50(12): 1461-1470.
[11] 傅欣欣, 董俊华, 韩恩厚, 柯伟. 低碳钢Q235在模拟酸雨大气腐蚀条件下的电化学阻抗谱监测*[J]. 金属学报, 2014, 50(1): 57-63.
[12] 周小卫,沈以赴. Ni-CeO2纳米镀层在酸性NaCl溶液中的腐蚀行为及电化学阻抗谱特征[J]. 金属学报, 2013, 49(9): 1121-1130.
[13] 郝雪卉,董俊华,魏洁,柯伟,王长罡,徐小连,叶其斌. AH32耐蚀钢显微组织对其腐蚀行为的影响[J]. 金属学报, 2012, 48(5): 534-540.
[14] 厉英,丁玉石,崔绍刚,王常珍. 掺杂Sc的CaZrO3的制备及电学性能[J]. 金属学报, 2012, 48(5): 575-578.
[15] 张杰 宋秀霞 栾鑫 孙彩霞 段继周 侯保荣. 海藻希瓦氏菌对Zn-Al-Cd牺牲阳极的腐蚀性能影响[J]. 金属学报, 2012, 48(12): 1495-1502.