Please wait a minute...
金属学报  2021, Vol. 57 Issue (1): 71-81    DOI: 10.11900/0412.1961.2020.00238
  研究论文 本期目录 | 过刊浏览 |
高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能
毕胜1,2, 李泽琛3, 孙海霞3, 宋保永3, 刘振宇1(), 肖伯律1, 马宗义1
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.中国科学技术大学 材料科学与工程学院 沈阳 110016
3.北京宇航系统工程研究所 北京 100076
Microstructure and Mechanical Properties of Carbon Nanotubes-Reinforced 7055Al Composites Fabricated by High-Energy Ball Milling and Powder Metallurgy Processing
BI Sheng1,2, LI Zechen3, SUN Haixia3, SONG Baoyong3, LIU Zhenyu1(), XIAO Bolv1, MA Zongyi1
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Beijing Institute of Aerospace Systems Engineering, Beijing 100076, China
引用本文:

毕胜, 李泽琛, 孙海霞, 宋保永, 刘振宇, 肖伯律, 马宗义. 高能球磨结合粉末冶金法制备碳纳米管增强7055Al复合材料的微观组织和力学性能[J]. 金属学报, 2021, 57(1): 71-81.
Sheng BI, Zechen LI, Haixia SUN, Baoyong SONG, Zhenyu LIU, Bolv XIAO, Zongyi MA. Microstructure and Mechanical Properties of Carbon Nanotubes-Reinforced 7055Al Composites Fabricated by High-Energy Ball Milling and Powder Metallurgy Processing[J]. Acta Metall Sin, 2021, 57(1): 71-81.

全文: PDF(17863 KB)   HTML
摘要: 

采用高能球磨结合粉末冶金工艺制备了碳纳米管(CNT)含量(体积分数)分别为0、1%和3%的CNT/7055Al复合材料。采用OM、SEM、TEM以及拉伸实验等方法研究了CNT/7055Al复合材料的CNT分布、晶粒结构、近界面结构及力学性能,分析了复合材料的强化机制和各向异性。结果表明,CNT/7055Al复合材料为无CNT的粗晶区与富集CNT的超细晶区组成的双模态晶粒结构;CNT在Al基体的超细晶区中分散良好,CNT-Al界面干净清洁,界面反应产物少;3%CNT/7055Al复合材料沿挤压方向的抗拉强度达到816 MPa,但延伸率仅为0.5%。细晶强化和Orowan强化是CNT/7055Al复合材料主要的强化机制。由于CNT沿不同方向的增强效率不同以及粗晶条带组织的存在,复合材料表现出比基体合金更强烈的各向异性,在垂直挤压方向的拉伸性能要弱于沿挤压方向的拉伸性能。

关键词 碳纳米管铝基复合材料力学性能各向异性高能球磨粉末冶金    
Abstract

In the recent years, lightweight and high-strength structural materials have gained much attention in engineering applications. Carbon nanotube (CNT)-reinforced Al (CNT/Al) composites are promising structural materials owing to the good mechanical properties and high reinforcing efficiency of CNTs. Previous studies on these composites mainly focused on fabricating CNT-reinforced low-strength or medium-high-strength Al alloys (such as pure Al, or 2xxx series or 6xxx series Al alloys) composites via various dispersion methods. However, only few studies investigated composites with super-high-strength Al alloys as the matrices. In the present work, CNT/7055Al composites with CNT volume fractions of 0%, 1%, and 3% were prepared by high-energy ball milling combined with powder metallurgy. The CNT distribution, grain structure, interface, and mechanical properties of the CNT/7055Al composite were investigated using OM, SEM, TEM, and tensile tests. The strengthening mechanism and anisotropy of the composite were analyzed. The results indicated that the composite had a bimodal grain structure consisting of CNT-free coarse grain zones and CNT-enriched ultrafine grain zones. CNTs were well dispersed in the ultrafine grain zones of the Al matrix, and the CNT/Al interface was clean. There were only few reaction products at the interface. The tensile strength of the 3%CNT/7055Al composite reached 816 MPa, but the elongation was only 0.5%. Grain refinement and Orowan strengthening were the main strengthening mechanisms of the CNT/7055Al composite. Because of the load transfer efficiency of CNTs and a coarse grain band structure, the composite exhibited stronger anisotropy than the matrix alloy. The tensile properties of the CNT/7055Al composite normal to the extrusion direction were weaker than those in the extrusion direction.

Key wordscarbon nanotube (CNT)    aluminum matrix composites    mechanical property    anisotropy    high-energy ball milling    powder metallurgy
收稿日期: 2020-07-06     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51931009);国家重点研发计划项目(2017YFB0703104);中国科学院前沿科学重点研究计划项目(QYZDJ-SSW-JSC015);中国科学院青年创新促进会项目(2020197)
作者简介: 毕 胜,男,1990年生,博士生
图1  7055Al合金球形粉末和碳纳米管(CNTs)的SEM像
图2  T6态CNT/7055Al复合材料OM像和背散射SEM像
图3  T6态1%CNT/7055Al复合材料晶粒结构和CNT分布的TEM像
图4  T6态CNT/7055Al复合材料细晶区晶粒的TEM像
图5  T6态1%CNT/7055Al复合材料中粗晶内和细晶内析出相的TEM像
图6  3%CNT/7055Al复合材料球磨6 h粉末及T6态复合材料的归一化Raman光谱
图7  T6态1%CNT/7055Al复合材料中CNT-Al近界面的HRTEM像

Volume fraction of CNT

%

Yield strength

MPa

Tensile strength

MPa

Elongation

%

Modulus

GPa

0657±11700±82.8±0.673
l692±14760±101.8±0.379
3730±2816±40.5±0.181
表1  T6态CNT/7055Al复合材料的力学性能
图8  不同体系的CNT/Al复合材料的力学性能
SampleOrientation relationship between extrusion direction and tension direction

Yield strength

MPa

Tensile strength

MPa

Elongation

%

7055AlParallel657±11700±82.8±0.6
Perpendicular607±3644±82.4±0.6
1%CNT/7055AlParallel692±14760±101.8±0.3
Perpendicular618±4661±91.0±0.5
表2  T6态7055Al及1%CNT/7055Al复合材料在不同方向拉伸性能
图9  拉伸方向平行于挤压方向和垂直挤压方向时T6态1%CNT/7055Al复合材料拉伸断口的SEM像(a, b) tension direction parallel to extrusion direction(c, d) tension direction perpendicular to extrusion direction
Positionλp / nmPrecipitate length / nmPrecipitate width / nmr / nm
In coarse grains26.3017.902.905.20
In fine grains22.009.600.952.65
Mean24.153.93
表3  析出相平均间距(λp)与平均半径(r)的测量结果
1 Wang C, Wang B B, Wang D, et al. High-speed friction stir welding of SiCp/Al-Mg-Si-Cu composite [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 32: 677
2 Ma K, Zhang X X, Wang D, et al. Optimization and simulation of deformation parameters of SiC/2009Al composites [J]. Acta Metall. Sin., 2019, 55: 1329
2 马 凯, 张星星, 王 东等. SiC/2009Al复合材料的变形加工参数的优化仿真研究 [J]. 金属学报, 2019, 55: 1329
3 Ma G N, Wang D, Liu Z Y, et al. Effect of hot pressing temperature on microstructure and tensile properties of SiC/Al-Zn-Mg-Cu composites [J]. Acta Metall. Sin., 2019, 55: 1319
3 马国楠, 王 东, 刘振宇等. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响 [J]. 金属学报, 2019, 55: 1319
4 Zhou L, Cui C, Wang Q Z, et al. Constitutive equation and model validation for a 31 vol.% B4Cp/6061Al composite during hot compression [J]. J. Mater. Sci. Technol., 2018, 34: 1730
5 Li J C, Zhang X X, Geng L. Improving graphene distribution and mechanical properties of GNP/Al composites by cold drawing [J]. Mater. Des., 2018, 144: 159
6 Zheng Z, Zhang X X, Li J C, et al. Achieving homogeneous distribution of high-content graphene in aluminum alloys via high-temperature cumulative shear deformation [J]. Mater. Des., 2020, 193: 108796
7 Qian D, Wagner G J, Liu W K, et al. Mechanics of carbon nanotubes [J]. Appl. Mech. Rev., 2002, 55: 495
8 Liu Z Y, Xiao B L, Wang W G, et al. Effect of carbon nanotube orientation on mechanical properties and thermal expansion coefficient of carbon nanotube-reinforced aluminum matrix composites [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 901
9 Zhao K, Liu Z Y, Xiao B Y, et al. Friction stir welding of carbon nanotubes reinforced Al-Cu-Mg alloy composite plates [J]. J. Mater. Sci. Technol., 2017, 33: 1004
10 Yu Z Y, Tan Z Q, Fan G L, et al. Effect of interfacial reaction on Young􀆳s modulus in CNT/Al nanocomposite: A quantitative analysis [J]. Mater. Charact., 2018, 137: 84
11 Esawi A M K, Morsi K, Sayed A, et al. Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites [J]. Compos. Sci. Technol., 2010, 70: 2237
12 Jafari M, Abbasi M H, Enayati M H, et al. Mechanical properties of nanostructured Al2024-MWCNT composite prepared by optimized mechanical milling and hot pressing methods [J]. Adv. Powder Technol., 2012, 23: 205
13 Jiang L, Li Z Q, Fan G L, et al. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution [J]. Carbon, 2012, 50: 1993
14 Yang X D, Zou T C, Shi C S, et al. Effect of carbon nanotube (CNT) content on the properties of in-situ synthesis CNT reinforced Al composites [J]. Mater. Sci. Eng., 2016, A660: 11
15 Nam D H, Cha S I, Lim B K, et al. Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al-Cu composites [J]. Carbon, 2012, 50: 2417
16 Liu Z Y, Zhao K, Xiao B L, et al. Fabrication of CNT/Al composites with low damage to CNTs by a novel solution-assisted wet mixing combined with powder metallurgy processing [J]. Mater. Des., 2016, 97: 424
17 Zhao K, Liu Z Y, Xiao B L, et al. Origin of insignificant strengthening effect of CNTs in T6-treated CNT/6061Al composites [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 134
18 Liu Z Y, Xiao B L, Wang W G, et al. Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing [J]. Carbon, 2014, 69: 264
19 Xu R, Tan Z Q, Xiong D B, et al. Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling [J]. Composites, 2017, 96A: 57
20 Liu X Q, Li C J, Eckert J, et al. Microstructure evolution and mechanical properties of carbon nanotubes reinforced Al matrix composites [J]. Mater. Charact., 2017, 133: 122
21 Zhang X X, Zhang J F, Liu Z Y, et al. Microscopic stresses in carbon nanotube reinforced aluminum matrix composites determined by in-situ neutron diffraction [J]. J. Mater. Sci. Technol., 2020, 54: 58
22 Liu Z Y, Xiao B L, Wang W G, et al. Modelling of carbon nanotube dispersion and strengthening mechanisms in Al matrix composites prepared by high energy ball milling-powder metallurgy method [J]. Composites, 2017, 94A: 189
23 Liu Z Y, Xu S J, Xiao B L, et al. Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites [J]. Composites, 2012, 43A: 2161
24 Choi H J, Shin J H, Bae D H. The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites [J]. Composites, 2012, 43A: 1061
25 Esawi A M K, Morsi K, Sayed A, et al. Fabrication and properties of dispersed carbon nanotube-aluminum composites [J]. Mater. Sci. Eng., 2009, A508: 167
26 Choi H J, Bae D H. Strengthening and toughening of aluminum by single-walled carbon nanotubes [J]. Mater. Sci. Eng., 2011, A528: 2412
27 Liu Z Y, Ma K, Fan G H, et al. Enhancement of the strength-ductility relationship for carbon nanotube/Al-Cu-Mg nanocomposites by material parameter optimisation [J]. Carbon, 2020, 157: 602
28 Chen M L, Fan G L, Tan Z Q, et al. Design of an efficient flake powder metallurgy route to fabricate CNT/6061Al composites [J]. Mater. Des., 2018, 142: 288
29 Xu R, Tan Z Q, Fan G L, et al. High-strength CNT/Al-Zn-Mg-Cu composites with improved ductility achieved by flake powder metallurgy via elemental alloying [J]. Composites, 2018, 111A: 1
30 Choi H, Shin J, Min B, et al. Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites [J]. J. Mater. Res., 2009, 24: 2610
31 Li M J, Ma K K, Jiang L, et al. Synthesis and mechanical behavior of nanostructured Al 5083/n-TiB2 metal matrix composites [J]. Mater. Sci. Eng., 2016, A656: 241
32 Chen K H, Liu H W, Zhang Z, et al. The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments [J]. J. Mater. Process. Technol., 2003, 142: 190
33 Williamson G K, Hall W H. X-Ray line broadening from filed aluminium and wolfram [J]. Acta Metall., 1953, 1: 22
34 Zhao Y H, Liao X Z, Jin Z, et al. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing [J]. Acta Mater., 2004, 52: 4589
35 Chen B, Shen J, Ye X, et al. Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites [J]. Acta Mater., 2017, 140: 317
36 Choi H J, Min B H, Shin J H, et al. Strengthening in nanostructured 2024 aluminum alloy and its composites containing carbon nanotubes [J]. Composites, 2011, 42A: 1438
37 Fan X G, Jiang D M, Meng Q C, et al. The microstructural evolution of an Al-Zn-Mg-Cu alloy during homogenization [J]. Mater. Lett., 2006, 60: 1475
38 Ci L J, Ryu Z, Jin-Phillipp N Y, et al. Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum [J]. Acta Mater., 2006, 54: 5367
39 Lipecka J, Andrzejczuk M, Lewandowska M, et al. Evaluation of thermal stability of ultrafine grained aluminium matrix composites reinforced with carbon nanotubes [J]. Compos. Sci. Technol., 2011, 71: 1881
40 Liu Z Y, Xiao B L, Wang W G, et al. Elevated temperature tensile properties and thermal expansion of CNT/2009Al composites [J]. Compos. Sci. Technol., 2012, 72: 1826
41 Kim W J, Lee S H. High-temperature deformation behavior of carbon nanotube (CNT)-reinforced aluminum composites and prediction of their high-temperature strength [J]. Composites, 2014, 67A: 308
42 Chen J Z, Zhen L, Yang S J, et al. Investigation of precipitation behavior and related hardening in AA 7055 aluminum alloy [J]. Mater. Sci. Eng., 2009, A500: 34
43 Mondal C, Mishra B, Jena P K, et al. Effect of heat treatment on the behavior of an AA7055 aluminum alloy during ballistic impact [J]. Int. J. Impact Eng., 2011, 38: 745
44 Wang T, Yin Z M, Shen K, et al. Single-aging characteristics of 7055 aluminum alloy [J]. Trans. Nonferrous Met. Soc. China, 2007, 17: 548
45 Hu T, Ma K, Topping T D, et al. Precipitation phenomena in an ultrafine-grained Al alloy [J]. Acta Mater., 2013, 61: 2163
46 Sha G, Yao L, Liao X Z, et al. Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy [J]. Ultramicroscopy, 2011, 111: 500
47 Dresselhaus M S, Dresselhaus G, Saito R, et al. Raman spectroscopy of carbon nanotubes [J]. Phys. Rep., 2005, 409: 47
48 Yan L P, Tan Z Q, Ji G, et al. A quantitative method to characterize the Al4C3-formed interfacial reaction: The case study of MWCNT/Al composites [J]. Mater. Charact., 2016, 112: 213
49 He C, Zhao N, Shi C, et al. An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites [J]. Adv. Mater., 2007, 19: 1128
50 Liu Z Y, Xiao B L, Wang W G, et al. Tensile strength and electrical conductivity of carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing [J]. J. Mater. Sci. Technol., 2014, 30: 649
51 Wei H, Li Z Q, Xiong D B, et al. Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design [J]. Scr. Mater., 2014, 75: 30
52 Zhang Z W, Liu Z Y, Xiao B L, et al. High efficiency dispersal and strengthening of graphene reinforced aluminum alloy composites fabricated by powder metallurgy combined with friction stir processing [J]. Carbon, 2018, 135: 215
53 Li S H, Chao C G. Effects of carbon fiber/Al interface on mechanical properties of carbon-fiber-reinforced aluminum-matrix composites [J]. Metall. Mater. Trans., 2004, 35A: 2153
54 Liu Z Y, Wang L H, Zan Y N, et al. Enhancing strengthening efficiency of graphene nano-sheets in aluminum matrix composite by improving interface bonding [J]. Composites, 2020, 199B: 108268
55 Li J C, Zhang X X, Geng L. Effect of heat treatment on interfacial bonding and strengthening efficiency of graphene in GNP/Al composites [J]. Composites, 2019, 121A: 487
56 Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy [J]. Acta Mater., 2014, 62: 141
57 Liu Z Y, Xiao B L, Wang W G, et al. Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing [J]. Carbon, 2012, 50: 1843
58 Nardone V C, Prewo K M. On the strength of discontinuous silicon carbide reinforced aluminum composites [J]. Scr. Mater., 1986, 20: 43
59 English A T. Influence of mechanical fibering on anisotropy of strength and ductility [J]. JOM, 1965, 17(4): 395
60 Nasiri-Abarbekoh H, Ekrami A, Ziaei-Moayyed A A, et al. Effects of rolling reduction on mechanical properties anisotropy of commercially pure titanium [J]. Mater. Des., 2012, 34: 268
61 Shaji E M, Kalidindi S R, Doherty R D, et al. Fracture properties of multiphase alloy MP35N [J]. Mater. Sci. Eng., 2003, A349: 313
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[11] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[12] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[13] 徐磊, 田晓生, 吴杰, 卢正冠, 杨锐. 热等静压成形Inconel 718粉末合金的显微组织和力学性能[J]. 金属学报, 2023, 59(5): 693-702.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 马宗义, 肖伯律, 张峻凡, 朱士泽, 王东. 航天装备牵引下的铝基复合材料研究进展与展望[J]. 金属学报, 2023, 59(4): 457-466.