Please wait a minute...
金属学报  2018, Vol. 54 Issue (9): 1236-1244    DOI: 10.11900/0412.1961.2017.00563
  本期目录 | 过刊浏览 |
Fe-Ni基合金时效过程中γ'相析出的原子探针层析技术研究
宋元元, 赵明久, 戎利建()
中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016
Study on the Precipitation of γ' in a Fe-Ni Base Alloy During Ageing by APT
Yuanyuan SONG, Mingjiu ZHAO, Lijian RONG()
CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institue of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

宋元元, 赵明久, 戎利建. Fe-Ni基合金时效过程中γ'相析出的原子探针层析技术研究[J]. 金属学报, 2018, 54(9): 1236-1244.
Yuanyuan SONG, Mingjiu ZHAO, Lijian RONG. Study on the Precipitation of γ' in a Fe-Ni Base Alloy During Ageing by APT[J]. Acta Metall Sin, 2018, 54(9): 1236-1244.

全文: PDF(7393 KB)   HTML
摘要: 

将一种Fe-Ni基沉淀强化奥氏体合金在980 ℃固溶后水淬,在620 ℃经过不同时间时效。利用硬度测试及原子探针层析技术(APT)研究时效过程中γ'相的析出行为及其对材料硬度的影响。结果表明,当时效时间小于6 h时,合金硬度增加较快,由时效前的145 HV迅速增加至205 HV,随后硬度增加速率缓慢;时效120 h时,硬度为251 HV。APT结果表明,合金经固溶处理后,合金元素均匀分布在基体中。在时效最初阶段,Ti发生了较为明显的偏聚,形成含有Fe、Ni和Al等元素的富Ti纳米团簇。随着时效时间延长,富Ti纳米团簇中的Ni和Al原子的含量逐步增多,而Fe、Cr及Mo等原子的含量不断减少;当时效至120 h时,团簇中Ni与Ti+Al比值近似于3,即已完全形成γ'相,表明γ'相析出是形核-长大过程。合金硬度的变化与时效过程中γ'相的数量密度和体积分数有关。

关键词 Fe-Ni基合金γ'相;时效纳米团簇原子探针层析技术    
Abstract

High strength Fe-Ni base austenitic alloys, such as A286 and JBK-75, are widely used in gas turbine jet engines and hydrogen service and so on because of their excellent corrosion resistance and low hydrogen embrittlement sensitivity. The ordered coherent γ' [Ni3(Al,Ti)], precipitated during ageing, is thought to have the main contribution on the strength. Thus, it is very important to understand the characterization of the precipitation. However, few previous studies are focused on atomic scale evolution of the precipitated phase. Atom probe tomography (APT) is a unique microscopy technique that provides 3D analytical mapping of materials at near atomic resolution and a high detection sensitivity for all elements. The present research is focused on the microstructure evolution at ageing temperature at different time scales using APT. A Fe-Ni base austenite alloy were aged at 620 ℃ for different time after solution treated at 980 ℃ for 2 h. Hardness testing indicates that a sharp increase is observed when the ageing time is less than 6 h. The hardness is up to 205 HV from the initial 145 HV at the ageing time 6 h. After that the hardness increases slowly. The hardness is 251 HV at 120 h. APT results reveal that Ti-rich nanoclusters precipitate obviously at the initial stage of ageing, which contain Fe, Cr, Ni, Mo and Al elements. As the ageing time increases, more Ni and Al atoms are segregated in the Ti-rich nanoclusters while the Fe, Cr and Mo are ejected from the nanoclusters. When the ageing time is up to 120 h, the Ni/(Ti+Al) ration is approximately close to 3. The precipitates can be identified as γ' phase. The results reveal that the formation of γ' involves nucleation and growth. Effect of the number density and the size of the γ' precipitates on the hardening of the alloy has been estimated.

Key wordsFe-Ni base alloy    γ' phase;    ageing    nanocluster    APT
收稿日期: 2017-12-29     
ZTFLH:  TG142  
基金资助:国家自然科学基金委员会与中国工程物理研究院联合基金项目No.U1730140
作者简介:

作者简介 宋元元,女,1984年生,副研究员,博士

图1  J75合金经980 ℃固溶1 h后在620 ℃等温时效不同时间后的硬度
图2  J75合金经过980 ℃固溶1 h后Fe、Cr、Mo、Ni、Ti和Al原子的三维空间分布图及Al和Ti原子的最近邻分布曲线
图3  J75合金在620 ℃ 时效1 h后Fe、 Cr、Mo、Ni、Ti和Al原子的三维空间分布图,Al和Ti原子的最近邻分布曲线,所得到的纳米团簇及选取20 nm×20 nm×2 nm三维空间中Fe、Ni、Cr、Ti和Al原子分布图
图4  J75合金在620 ℃时效6 h后Fe、Cr、Mo、Ni、Ti和Al原子的三维空间分布图,Al和Ti原子的最近邻分布曲线,20 nm×20 nm×2 nm三维空间内Fe、Ni、Cr、Ti、Al和Mo原子分布图及其长方框内区域相应的一维浓度分布图
图5  J75合金在620 ℃ 时效16 h后Fe、Cr、Mo、Ni、Ti和Al原子的三维空间分布图,20 nm×20 nm×2 nm三维空间内Fe、Ni、Cr、Ti、Mo和Al原子分布图及长方框内区域相应的一维浓度分布图
图6  J75合金在620 ℃ 时效120 h后Fe、Cr、Mo、Ni、Ti和Al原子的三维空间分布图
图7  J75合金在620 ℃ 时效120 h后Al+Ti为11%的等浓度面分布图及相应的成分分布图,及在10 nm ×10 nm× 2nm三维空间内Fe、Ni、Cr、Ti、Mo和Al原子分布图
图8  J75合金在时效过程中纳米团簇或析出相的数量密度及体积分数
[1] Brooks J A, Thompson A W.Microstructure and hydrogen effects on fracture in the alloy A-286[J]. Metall. Trans., 1993, 24A: 1983
[2] Li X Y, Li Y Y.The Hydrogen Damage of Austenite Alloys [M]. Beijing: Science Press, 2003: 1(李秀艳, 李依依. 奥氏体合金的氢损伤 [M]. 北京: 科学出版社, 2003: 1)
[3] De Cicco H, Luppo M I, Gribaudo L M, et al.Microstructural development and creep behavior in A286 superalloy[J]. Mater. Character., 2004, 52: 85
[4] Ma L M, Liang G J, Fan C G, et al.Effect of microstructure on hydrogen damage of JBK-75 precipitate-strengthened austenitic steel[J]. Acta. Metall. Sin.(Engl. Lett.), 1997, 10: 206
[5] Guo J T.Materials Science and Engineering for Superalloys (Volume one)—Application of basic theory [M]. Beijing: Science Press, 2008: 300(郭建亭. 高温合金材料学(上册)-应用基础理论 [M]. 北京: 科学出版社, 2008: 300)
[6] Rho B S, Nam S W.Fatigue-induced precipitates at grain boundary of Nb-A286 alloy in high temperature low cycle fatigue[J]. Mater. Sci. Eng., 2000, A291: 54
[7] Li X Y, Zhang J, Rong L J, et al.Cellular η phase precipitation and its effect on the tensile properties in an Fe-Ni-Cr alloy[J]. Mater. Sci. Eng., 2008, A488: 547
[8] Chen S H, Zhao M J, Rong L J.Role of γ' characteristic on the hydrogen embrittlement susceptibility of Fe-Ni-Cr alloys[J]. Corros. Sci., 2015, 101: 75
[9] Birnbaum H K, Sofronis P.Hydrogen-enchanced localized plasticity—A mechanism for hydrogen-related fracture[J]. Mater. Sci. Eng., 1994, A196: 191
[10] Guo Z F, Zhao M J, Li C F, et al.Mechanism of hydrogen embrittlement in a gamma-prime phase strengthened Fe-Ni based austenitic alloy[J]. Mater. Sci. Eng., 2012, A555: 77
[11] Li Z W, Zhao M J, Rong L J.Study on behaviors of hydrogen-induced fracture of precipitation strengthened austenitic alloy[J]. Chin. J. Mater. Res., 2012, 26: 113(李忠文, 赵明久, 戎利建. 沉淀强化奥氏体合金的氢致断裂行为[J]. 材料研究学报, 2012, 26: 113)
[12] Chen S H, Zhao M J, Rong L J.Hydrogen-induced cracking behavior of twin boundary in γ′ phase strengthened Fe-Ni based austenitic alloys[J]. Mater. Sci. Eng., 2013, A561: 7
[13] Zhou B X, Liu W Q.The application of 3DAP in the study of materials science[J]. Mater. Sci. Tech., 2007, 15: 405(周邦新, 刘文庆. 三维原子探针及其在材料科学研究中的应用[J]. 材料科学与工艺, 2007, 15: 405)
[14] Marquis E A, Bachhav M, Chen Y M, et al.On the current role of atom probe tomography in materials characterization and materials science[J]. Curr. Opin. Solid State Mater. Sci., 2013, 17: 217
[15] Kapoor M, Isheim D, Ghosh G, et al.Aging characteristics and mechanical properties of 1600 MPa body-centered cubic Cu and B2-NiAl precipitation-strengthened ferritic steel[J]. Acta Mater., 2014, 73: 56
[16] Jiao Z B, Luan J H, Miller M K, et al.Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles[J]. Acta Mater., 2015, 84: 283
[17] Baik S I, Rawlings M J S, Dunand D C. Atom probe tomography study of Fe-Ni-Al-Cr-Ti ferritic steels with hierarchically-structured precipitates[J]. Acta Mater., 2018, 144: 707
[18] Jiang S H, Wang H, Wu Y, et al.Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544: 460
[19] Bagot P A J, Silk O B W, Douglas J O, et al. An atom probe tomography study of site preference and partitioning in a nickel-based superalloy[J]. Acta Mater., 2017, 125: 156
[20] Meher S, Banerjee R.Partitioning and site occupancy of Ta and Mo in Co-base γ/γ′ alloys studied by atom probe tomography[J]. Intermetallics, 2014, 49: 138
[21] Huang Y Y, Mao Z G, Noebe R D, et al.The effects of refractory elements on Ni-excesses and Ni-depletions at γ (f.c.c.)/γ′(L12) interfaces in model Ni-based superalloys: Atom-probe tomographic experiments and first-principles calculations[J]. Acta Mater., 2016, 121: 288
[22] Hwang J Y, Nag S, Singh A R P, et al. Evolution of the γ/γ' interface width in a commercial nickel base superalloy studied by three-dimensional atom probe tomography[J]. Scr. Mater., 2009, 61: 92
[23] Tan X P, Mangelinck D, Perrin-Pellegrino C, et al.Atom probe tomography of secondary γ' precipitation in a single crystal Ni-based superalloy after isothermal aging at 1100 ℃[J]. J. Alloys Compd., 2014, 611: 389
[24] Miller M K.Atom Probe Tomography: Analysis at the Atomic Level[M]. New York: Kluwer Academic/Plenum Publishers, 2000: 11, 160
[25] Larson D J, Prosa T J, Ulfig R M, et al.Local Electrode Atom Probe Tomography [M]. New York: Spring Press, 2013: 180
[26] Yeli G, Auger M A, Wilford K, et al.Sequential nucleation of phases in a 17-4PH steel: Microstructural characterisation and mechanical properties[J]. Acta Mater., 2017, 125: 38
[27] Rhodes C G, Thompson A W.Microstructure and hydrogen performance of alloy-903[J]. Metall. Trans., 1977, 8A: 949
[28] Reed R C.The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 43
[29] Hornbogen E, Gahr K H Z. Distribution of plastic strain in alloys containing small particles[J]. Metallography, 1975, 8: 181
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[3] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[4] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[5] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[6] 马国楠, 朱士泽, 王东, 肖伯律, 马宗义. SiC颗粒增强Al-Zn-Mg-Cu复合材料的时效行为和力学性能[J]. 金属学报, 2023, 59(12): 1655-1664.
[7] 巩向鹏, 伍翠兰, 罗世芳, 沈若涵, 鄢俊. 自然时效对Al-2.95Cu-1.55Li-0.57Mg-0.18Zr合金160℃人工时效的影响[J]. 金属学报, 2023, 59(11): 1428-1438.
[8] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[9] 任平, 陈兴品, 王存宇, 俞峰, 曹文全. 预变形和双级时效对Fe-30Mn-11Al-1.2C奥氏体低密度钢显微组织和力学性能的影响[J]. 金属学报, 2022, 58(6): 771-780.
[10] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[11] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[12] 袁波, 郭明星, 韩少杰, 张济山, 庄林忠. 添加3%ZnAl-Mg-Si-Cu合金非等温时效析出行为的影响[J]. 金属学报, 2022, 58(3): 345-354.
[13] 朱士泽, 王东, 王全兆, 肖伯律, 马宗义. Cu含量对SiC/Al-Mg-Si-Cu复合材料自然时效负面效应的影响[J]. 金属学报, 2021, 57(7): 928-936.
[14] 王学, 李勇, 王家庆, 胡磊. 高温时效对T23钢粗晶热影响区显微组织及再热裂纹敏感性的影响[J]. 金属学报, 2021, 57(6): 736-748.
[15] 叶俊杰, 贺志荣, 张坤刚, 杜雨青. 时效对Ti-50.8Ni-0.1Zr形状记忆合金显微组织、拉伸性能和记忆行为的影响[J]. 金属学报, 2021, 57(6): 717-724.