|
|
高能瞬时电脉冲处理对42CrMo钢组织与性能的影响 |
潘栋, 赵宇光, 徐晓峰( ), 王艺橦, 江文强, 鞠虹 |
吉林大学材料科学与工程学院汽车材料教育部重点实验室 长春 130025 |
|
Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel |
Dong PAN, Yuguang ZHAO, Xiaofeng XU( ), Yitong WANG, Wenqiang JIANG, Hong JU |
Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130025, China |
引用本文:
潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
Dong PAN,
Yuguang ZHAO,
Xiaofeng XU,
Yitong WANG,
Wenqiang JIANG,
Hong JU.
Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel[J]. Acta Metall Sin, 2018, 54(9): 1245-1252.
[1] | Li Y K, Chen J D, Lu S P.Residual stress in the wheel of 42CrMo steel during quenching[J]. Acta Metall. Sin., 2014, 50: 121(李永奎, 陈俊丹, 陆善平. 42CrMo钢车轮锻件在淬火过程中的残余应力研究[J]. 金属学报, 2014, 50: 121) | [2] | Chen J D, Mo W L, Wang P, et al.Effects of tempering temperature on the impact toughness of steel 42CrMo[J]. Acta Metall. Sin., 2012, 48: 1186(陈俊丹, 莫文林, 王培等. 回火温度对42CrMo钢冲击韧性的影响[J]. 金属学报, 2012, 48: 1186) | [3] | Li J, Chen Z W, Liu D K.Heat treatment for high strengh blade shaft of 42CrMo steel[J]. Heavy Cast. Forg., 2000, (4): 25(李进, 陈增武, 刘定坤. 42CrMo钢高强度叶片轴的热处理[J]. 大型铸锻件, 2000, (4): 25) | [4] | Xu G X, Chen L, Li B, et al.Influence of repeated quenching and tempering on microstructure and mechanical properties of 42CrMo steel[J]. Heat Treat. Met., 2014, 39(5): 112(徐钢新, 陈亮, 李勃等. 多次调质对42CrMo钢组织和力学性能的影响[J]. 金属热处理, 2014, 39(5): 112) | [5] | Feng F C, Hong H P, Xiao Y.Dynamic recrystallization rule and model of 42CrMo steel [A]. The 9th CSM Biennial Conference [C]. Beijing: Metallurgical Industry Press, 2013: 2497(冯富春, 洪慧平, 肖玉. 42CrMo4钢动态再结晶规律及动态再结晶模型研究 [A]. 第九届中国钢铁年会论文集 [C]. 北京: 冶金工业出版社, 2013: 2497) | [6] | Conrad H.Electro-plasticity in metals and ceramics[J]. Mater. Sci. Eng., 2000, A287: 276 | [7] | Yang D, Conrad H.Exploratory study into the effects of an electric field and of high current density electropulsing on the plastic deformation of TiAl[J]. Intermetallics, 2001, 9: 943 | [8] | Mizubayashi H, Okuda S.Structural relaxation induced by passing electric current in amorphous Cu50Ti50 at low temperature[J]. Phys. Rev., 1989, 40B: 8057 | [9] | Barnak J P, Sprecher A F, Conrad H.Colony (grain) size reduction in eutectic Pb-Sn castings by electropulsing[J]. Scr. Metall. Mater., 1995, 32: 879 | [10] | Song H, Wang Z J, He X D, et al.Self-healing of damage inside metals triggered by electropulsing stimuli[J]. Sci. Rep., 2017, 7: 7079 | [11] | Zhang J T, Zhao Y G, Tan J, et al.Microstructure refinement and property improvement of metastable austenitic manganese steel induced by electropulsing[J]. J. Iron Steel Res. Int., 2014, 21: 685 | [12] | Guo X N, Shen Y F, Zhou Y Z, et al.Effect of a single high current density electropulsing on the mechanical properties of H62[J]. Chin. J. Mater. Res., 1999, 13: 73(郭晓楠, 沈以赴, 周亦冑等. 高密度单脉冲电流对H62铜带力学性能的影响[J]. 材料研究学报, 1999, 13: 73) | [13] | Lu W J, Qin R S.Stability of martensite with pulsed electric current in dual-phase steels[J]. Mater. Sci. Eng., 2016, A677: 252 | [14] | Kasatkin O G, Vinokur B B, Pilyushenko V L.Calculation models for determining the critical points of steel[J]. Met. Sci. Heat Treat., 1984, 26: 27 | [15] | Morito S, Tanaka H, Konishi R, et al.The morphology and crystallography of lath martensite in Fe-C alloys[J]. Acta Mater., 2003, 51: 1789 | [16] | Jiang B Y, Guan L, Tang G Y, et al.Improved mechanical properties of Mg-9Al-1Zn by the combination of aging, cold-rolling and electropulsing treatment[J]. J. Alloys Compd., 2015, 626: 297 | [17] | Lu W J, Qin R S.Effects of electropulsing on the microstructure evolution of 316L stainless steel[J]. Adv. Mater. Res., 2014, 992: 223 | [18] | Morsdorf L, Jeannin O, Barbier D, et al.Multiple mechanisms of lath martensite plasticity[J]. Acta Mater., 2016, 121: 202 | [19] | Yang Z Y, Chen J Y, Su J, et al.TEM study on relative orientation between adjacent martensite laths[J]. Trans. Mater. Heat Treat., 2004, 25: 35(杨卓越, 陈嘉砚, 苏杰等. 相邻板条马氏体间位向关系的TEM研究[J]. 材料热处理学报, 2004, 25: 35) | [20] | Wang J J, Van Der Zwaag S. Stabilization mechanisms of retained austenite in transformation-induced plasticity steel[J]. Metall. Mater. Trans., 2001, 32A: 1527 | [21] | Jimenez-Melero E, Van Dijk N H, Zhao L, et al. Characterization of individual retained austenite grains and their stability in low-alloyed TRIP steels[J]. Acta Mater., 2007, 55: 6713 | [22] | He F, Sun X J, Liu Q Y, et al.Microstructure and stability of retained austenite in a high Al-containing TRIP steel[J]. Iron Steel, 2009, 44(12): 87(何方, 孙新军, 刘清友等. 高铝TRIP钢的微观组织与残余奥氏体稳定性研究[J]. 钢铁, 2009, 44(12): 87) | [23] | Lin H Q, Zhao Y G, Zhao Y G, er al. Numerical simulation of temperature and thermal stress fields in cast-hot-working-die steel under high density electropulsing[J]. ISIJ Int., 2008, 48: 971 | [24] | Nakada N, Syarif J, Tsuchiyama T, et al.Improvement of strength-ductility balance by copper addition in 9%Ni steels[J]. Mater. Sci. Eng., 2004, A374: 137 | [25] | Sinclair C W, Poole W J, Bréchet Y.A model for the grain size dependent work hardening of copper[J]. Scr. Mater., 2006, 55: 739 | [26] | Chiang J, Lawrence B, Boyd J D, et al.Effect of microstructure on retained austenite stability and work hardening of TRIP steels[J]. Mater. Sci. Eng., 2011, A528: 4516 | [27] | Choi K S, Liu W N, Sun X, et al.Microstructure-based constitutive modeling of TRIP steel: Prediction of ductility and failure modes under different loading conditions[J]. Acta Mater., 2009, 57: 2592 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|