|
|
Incoloy 028合金不连续动态再结晶中链状组织形成机理研究 |
钟茜婷1, 王磊1,2, 刘峰1( ) |
1 西北工业大学凝固技术国家重点实验室 西安 710072 2 中国石油天然气集团公司石油管工程技术研究院 西安 710077 |
|
Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028 |
Xiting ZHONG1, Lei WANG1,2, Feng LIU1( ) |
1 State Key Lab of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China 2 Tubular Goods Research Institute of CNPC, Xi'an 710077, China |
引用本文:
钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.
Xiting ZHONG,
Lei WANG,
Feng LIU.
Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028[J]. Acta Metall Sin, 2018, 54(7): 969-980.
[1] | Humphrey F J, Hatherly M.Recrystallization and Related Annealing Phenomena [M]. 2nd Ed., Oxford: Pergamon Press, 2004: 427 | [2] | Sakai T, Belyakov A, Kaibyshev R, et al.Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions[J]. Prog. Mater. Sci., 2014, 60: 130 | [3] | Sakai T, Jonas J J.Dynamic recrystallization: Mechanical and microstructural considerations[J]. Acta Metall., 1984, 32: 189 | [4] | Jonas J J, Sellars C M, Tegart W J M. Strength and structure under hot-working conditions[J]. Metall. Rev., 1969, 14: 1 | [5] | Doherty R D, Hughes D A, Humphreys F J, et al.Current issues in recrystallization: A review[J]. Mater. Sci. Eng., 1997, A238: 219 | [6] | Huang K, Logé R E.A review of dynamic recrystallization phenomena in metallic materials[J]. Mater. Des., 2016, 111: 548 | [7] | Huang K, Marthinsen K, Zhao Q L, et al.The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials[J]. Prog. Mater. Sci., 2018, 92: 284 | [8] | Ponge D, Gottstein G.Necklace formation during dynamic recrystallization: Mechanisms and impact on flow behavior[J]. Acta Mater., 1998, 46: 69 | [9] | Belyakov A, Miura H, Sakai T.Dynamic recrystallization under warm deformation of polycrystalline copper[J]. ISIJ Int., 1998, 38: 595 | [10] | Wusatowska-Sarnek A M, Miura H, Sakai T. Nucleation and microtexture development under dynamic recrystallization of copper[J]. Mater. Sci. Eng., 2002, A323: 177 | [11] | Belyakov A, Miura H, Sakai T.Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel[J]. Mater. Sci. Eng., 1998, A255: 139 | [12] | Frommert M, Gottstein G.Mechanical behavior and microstructure evolution during steady-state dynamic recrystallization in the austenitic steel 800H[J]. Mater. Sci. Eng., 2009, A506: 101 | [13] | Li D F, Guo Q M, Guo S L, et al.The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy[J], Mater. Des., 2011, 32: 696 | [14] | Aretz W, Ponge D, Gottstein G.Evolution of necklace structures during hot compression of Ni3Al+B[J]. Scr. Metall. Mater., 1992, 27: 1593 | [15] | Jafari M, Najafizadeh A.Correlation between Zener-Hollomon parameter and necklace DRX during hot deformation of 316 stainless steel[J]. Mater. Sci. Eng., 2009, A501: 16 | [16] | Dudova N, Belyakov A, Sakai T, et al.Dynamic recrystallization mechanisms operating in a Ni-20%Cr alloy under hot-to-warm working[J]. Acta Mater., 2010, 58: 3624 | [17] | Karduck P, Gottstein G, Mecking H.Deformation structure and nucleation of dynamic recrystallization in copper single crystals[J]. Acta Metall., 1983, 31: 1525 | [18] | Brünger E, Wang X, Gottstein G.Nucleation mechanisms of dynamic recrystallization in austenitic steel alloy 800H[J]. Scr. Mater., 1998, 38: 1843 | [19] | Beladi H, Cizek P, Hodgson P D.Dynamic recrystallization of austenite in Ni-30 pct Fe model alloy: Microstructure and texture evolution[J]. Metall. Mater. Trans., 2009, 40A: 1175 | [20] | Zhu S Q, Yan H G, Liao X Z, et al.Mechanisms for enhanced plasticity in magnesium alloys[J]. Acta Mater., 2015, 82: 344 | [21] | Azarbarmas M, Aghaie-Khafri M, Cabrera A M, et al.Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718[J]. Mater. Sci. Eng., 2016, A678: 137 | [22] | Miura H, Sakai T, Andiarwanto S, et al.Nucleation of dynamic recrystallization at triple junctions in polycrystalline copper[J]. Philos. Mag., 2005, 85: 2653 | [23] | Beck M, Morse M, Corolewski C, et al.Understanding the effect of grain boundary character on dynamic recrystallization in stainless steel 316L[J]. Metall. Mater. Trans., 2017, 48A: 3831 | [24] | Lu S Y, Kang X F.Nickel Based and Iron-Nickel Based Corrosion Resistant Alloy [M]. Beijing: Chemical Industry Press, 1989: 247(陆世英, 康喜范. 镍基及铁镍基耐蚀合金 [M]. 北京: 化学工业出版社, 1989: 247) | [25] | Charnock W, Nutting J.The effect of carbon and nickel upon the stacking-fault energy of iron[J]. Met. Sci. J., 1967, 1: 123 | [26] | Vitos L, Korzhavyi P A, Johansson B.Evidence of large magnetostructural effects in austenitic stainless steels[J]. Phys. Rev. Lett., 2006, 96: 117210 | [27] | Lu J, Hultman L, Holmstr?m E, et al.Stacking fault energies in austenitic stainless steels[J]. Acta Mater., 2016, 111: 39 | [28] | Wang L, Liu F, Cheng J J, et al.Hot deformation characteristics and processing map analysis for nickel-based corrosion resistant alloy[J]. J. Alloys Compd., 2015, 623: 69 | [29] | Wang L, Liu F, Zuo Q, et al.Processing map and mechanism of hot deformation of a corrosion-resistant nickel-based alloy[J]. J. Mater. Eng. Perform., 2017, 26: 392 | [30] | Jonas J J, Quelennec X, Jiang L, et al.The Avrami kinetics of dynamic recrystallization[J]. Acta Mater., 2009, 57: 2748 | [31] | Wang L, Liu F, Zuo Q, et al.Prediction of flow stress for N08028 alloy under hot working conditions[J]. Mater. Des., 2013, 47: 737 | [32] | Chen L Q, Zhao Y, Xu X Q, et al.Dynamic recrystallization and precipitation behaviors of a kind of low carbon V-microalloyed steel[J]. Acta Metall. Sin., 2010, 46: 1215(陈礼清, 赵阳, 徐香秋等. 一种低碳钒微合金钢的动态再结晶与析出行为[J]. 金属学报, 2010, 46: 1215) | [33] | Zhi Y, Liu X H, Yu H L, et al.Simulation of microstructure and properties evolution of micro alloyed steel during hot deformation by cellular automaton[J]. Acta Metall. Sin., 2011, 47: 1396(支颖, 刘相华, 喻海良等. 微合金钢热变形组织与性能演变的CA模拟[J]. 金属学报, 2011, 47: 1396) | [34] | Zhao M L, Sun W R, Yang S L, et al.Hot deformation behavior of GH761 wrought Ni base superalloy[J]. Acta Metall. Sin., 2009, 45: 79(赵美兰, 孙文儒, 杨树林等. GH761变形高温合金的热变形行为[J]. 金属学报, 2009, 45: 79) | [35] | Lin Y C, Chen M S, Zhong J.Prediction of 42CrMo steel flow stress at high temperature and strain rate[J]. Mech. Res. Commun., 2008, 35: 142 | [36] | Graetz K, Miessen C, Gottstein G.Analysis of steady-state dynamic recrystallization[J]. Acta Mater., 2014, 67: 58 | [37] | Bay B, Hansen N, Hughes D A, et al.Evolution of f.c.c. deformation structures in polyslip[J]. Acta Metall. Mater., 1992, 40: 205 | [38] | Hughes D A, Hansen N.High angle boundaries formed by grain subdivision mechanisms[J]. Acta Mater., 1997, 45: 3871 | [39] | Yanushkevich Z, Belyakov A, Kaibyshev R.Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773-1273 K[J]. Acta Mater., 2015, 82: 244 | [40] | Valiev R Z, Islamgaliev R K, Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J]. Prog. Mater. Sci., 2000, 45: 103 | [41] | Bozzolo N, Soua? N, Logé R E.Evolution of microstructure and twin density during thermomechanical processing in a γ-γ' nickel-based superalloy[J]. Acta Mater., 2012, 60: 5056 | [42] | Grube W L, Rouze S R.The origin, growth and annihilation of annealing twins in austenite[J]. Can. Metall. Q., 1963, 2: 31 | [43] | Mahajan S, Pande C S, Imam M A, et al.Formation of annealing twins in f.c.c. crystals[J]. Acta Mater., 1997, 45: 2633 | [44] | Meyers M A, Murr L E.A model for the formation of annealing twins in f.c.c. metals and alloys[J]. Acta Metall., 1978, 26: 951 | [45] | Randle V.Twinning-related grain boundary engineering[J]. Acta Mater., 2004, 52: 4067 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|