Please wait a minute...
金属学报  2020, Vol. 56 Issue (10): 1401-1410    DOI: 10.11900/0412.1961.2020.00074
  本期目录 | 过刊浏览 |
850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究
张勇1(), 李鑫旭1, 韦康1, 万志鹏1, 贾崇林1, 王涛1, 李钊1, 孙宇2, 梁红艳3
1 中国航发北京航空材料研究院先进高温结构材料重点实验室 北京 100095
2 哈尔滨工业大学材料科学与工程学院 哈尔滨 150001
3 天津大学材料科学与工程学院 天津 300354
Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc
ZHANG Yong1(), LI Xinxu1, WEI Kang1, WAN Zhipeng1, JIA Chonglin1, WANG Tao1, LI Zhao1, SUN Yu2, LIANG Hongyan3
1 Key Laboratory of Science & Technology on Advanced High Temperature Structural Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
3 School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
引用本文:

张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
Yong ZHANG, Xinxu LI, Kang WEI, Zhipeng WAN, Chonglin JIA, Tao WANG, Zhao LI, Yu SUN, Hongyan LIANG. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. Acta Metall Sin, 2020, 56(10): 1401-1410.

全文: PDF(3699 KB)   HTML
摘要: 

采用真空感应熔炼+真空自耗重熔工艺制备铸锭,通过挤压开坯方法制备出了GH4975合金细晶棒材。利用Gleeble 1500热模拟试验机研究了GH4975合金在变形温度为1070~1220 ℃、应变速率为0.001~1 s-1条件下的热变形行为。结果表明,GH4975合金的应力-应变曲线具有典型的动态再结晶特征,存在应变硬化、流变软化和稳态流变3个阶段。基于GH4975合金挤压棒材的应力-应变曲线,建立了热变形参数本构方程,其热变形激活能(Q)为664587 J/mol;根据动态材料模型,构建了合金挤压棒材的热加工图,结合微观组织分析,确定了合金合适的热加工工艺范围。GH4975合金在1100~1130 ℃温度条件下易发生动态再结晶,其再结晶机制为应变诱导晶界形核。

关键词 涡轮盘变形高温合金GH4975挤压热变形动态再结晶    
Abstract

With the development of aero-engine in the direction of high thrust ratio, high efficiency and high reliability, the indicators of temperature resistance of cast & wrought superalloys are getting higher and higher. For the demand of aero-engine, the wrought superalloy materials used for aero engine turbine disc have been made remarkable progress. Form heat-resistant steel which temperature capability reaches 550 ℃ to iron-nickel based superalloy used at 650 ℃, and the high alloyed wrought superalloy with service temperature of 750 ℃ have been developed. The nickel-based wrought superalloy GH4975 is a high strength, complex alloying, hard-deformed wrought turbine disc alloy, which can be used at 850 ℃. In the study, the thermal deformation behavior of GH4975 extruded rod prepared by vacuum induction melting (VIM) and vacuum arc remelting (VAR) was studied by thermal simulation machine with the temperature range of 1070~1220 ℃ and strain rate range of 0.001~1 s-1. The results show that the stress-strain curves of GH4975 alloy are divided into three stages: strain hardening, flow softening and steady state rheology, exhibiting typical dynamic recrystallization characteristics. The constitutive equation of GH4975 extruded rod was established and the hot deformation activation energy was calculated as 664587 J/mol. Besides, the processing maps of GH4975 alloy were drawn based on the dynamic material model (DMM), and the suitable processing parameters are determined by combining with microstructure observation. The dynamic recrystallization easily occurs at the deformation temperature range of 1100~1130 ℃, and the nucleation mechanisms were elaborated to be strain inducing grain boundary.

Key wordsturbine disc    wrought superalloy    GH4975    extrusion    hot deformation    dynamic recrystallization
收稿日期: 2020-03-04     
ZTFLH:  TG146.1  
基金资助:预研基金项目(9140C4302XX)
作者简介: 张 勇,男,1976年生,高级工程师,博士
图1  挤压后并再结晶处理的GH4975棒材微观组织(腐蚀态)
图2  GH4975合金在不同变形条件下的真应力-真应变曲线
图3  GH4975合金热变形过程中相关参数之间的关系
图4  应力测定值与采用Arrhenius模型的峰值应力预测值对比
图5  GH4975合金在终应变0.8下的热加工图及不同变形区域的微观组织验证(阴影部分表示不稳定区域)
图6  GH4975合金在0.1 s-1应变速率和不同温度下变形后的微观组织
图7  1130 ℃下不同应变速率对GH4975合金组织的影响
图8  GH4975合金在不同变形条件下微观组织的TEM像
[1] Tian S F, Zhang G Q, Li Z, et al. The disk superalloys and disk manufacturing technologies for advanced aero engine [J]. J. Aeronaut. Mater., 2003, 23(suppl.1): 233
[1] (田世藩, 张国庆, 李 周等. 先进航空发动机涡轮盘合金及涡轮盘制造 [J]. 航空材料学报, 2003, 23(): 233)
[2] Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency [J]. Acta Metall. Sin., 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
[2] (刘永长, 张宏军, 郭倩颖等. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54: 1653)
doi: 10.11900/0412.1961.2018.00340
[3] Wang H P, Lü P, Cai X, et al. Rapid solidification kinetics and mechanical property characteristics of Ni-Zr eutectic alloys processed under electromagnetic levitation state [J]. Mater. Sci. Eng., 2020, A772: 138660
[4] Huang Q Y, Li H K. Superalloys [M]. Beijing: Metallurgical Industry Press, 2000: 4
[4] (黄乾尧, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000: 4)
[5] Luo J T, Yu W L, Xi C Y, et al. Preparation of ultrafine-grained GH4169 superalloy by high-pressure torsion and analysis of grain refinement mechanism [J]. J. Alloys Compd., 2019, 777: 157
doi: 10.1016/j.jallcom.2018.10.385
[6] Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52: 1259
doi: 10.11900/0412.1961.2016.00290
[6] (刘永长, 郭倩颖, 李 冲等. Inconel 718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52: 1259)
doi: 10.11900/0412.1961.2016.00290
[7] Zhang X, Li H W, Zhan M, et al. Electron force-induced dislocations annihilation and regeneration of a superalloy through electrical in-situ transmission electron microscopy observations [J]. J. Mater. Sci. Technol., 2020, 36: 79
doi: 10.1016/j.jmst.2019.08.008
[8] Zhang H J, Li C, Liu Y C, et al. Effect of hot deformation on γ" and δ phase precipitation of Inconel 718 alloy during deformation & isothermal treatment [J]. J. Alloys Compd., 2017, 716: 65
doi: 10.1016/j.jallcom.2017.05.042
[9] Kennedy R L. Allvac® 718PlusTM, superalloy for the next forty years [A]. Superalloys 718, 625, 706 and Derivatives 2005 [C]. Pittsburgh: TMS, 2005: 1
[10] Cao W D, Kennedy R. Role of chemistry in 718-type alloys-Allvac® 718PlusTM alloy development [A]. Superalloys 2004 [C]. Pittsburgh: TMS, 2004: 91
[11] Heaney J A, Lasonde M L, Powell A M, et al. Development of a new cast and wrought alloy (René 65) for high temperature disk applications [A]. Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives [C]. New York: John Wiley & Sons, 2014: 67
[12] Devaux A, Picqué B, Gervais M F, et al. AD730TM—A new nickel-based superalloy for high temperature engine rotative parts [A]. Superalloys 2012 [C]. Pennsylvania: TMS, 2012: 911
[13] Gu Y F, Cui C Y, Yuan Y, et al. Research progress in a high performance cast & wrought superalloy for turbine disc applications [J]. Acta Metall. Sin., 2015, 51: 1191
doi: 10.11900/0412.1961.2015.00442
[13] (谷月峰, 崔传勇, 袁 勇等. 一种高性能航空涡轮盘用铸锻合金的研究进展 [J]. 金属学报, 2015, 51: 1191)
doi: 10.11900/0412.1961.2015.00442
[14] Bi Z N, Qin H L, Dong Z G, et al. Residual stress evolution and its mechanism during the manufacture of superalloy disk forgings [J]. Acta Metall. Sin., 2019, 55: 1160
doi: 10.11900/0412.1961.2019.00089
[14] (毕中南, 秦海龙, 董志国等. 高温合金盘锻件制备过程残余应力的演化规律及机制 [J]. 金属学报, 2019, 55: 1160)
doi: 10.11900/0412.1961.2019.00089
[15] Wang Z X, Huang S, Zhang B J, et al. Study on freckle of a high-alloyed GH4065 nickel base wrought superalloy [J]. Acta Metall. Sin., 2019, 55: 417
doi: 10.11900/0412.1961.2018.00218
[15] (王资兴, 黄 烁, 张北江等. 高合金化GH4065镍基变形高温合金点状偏析研究 [J]. 金属学报, 2019, 55: 417)
doi: 10.11900/0412.1961.2018.00218
[16] Du J H, Zhao G P, Deng Q, et al. Development of wrought superalloy in China [J]. J. Aeronaut. Mater. 2016, 36(3): 27
[16] (杜金辉, 赵光普, 邓 群等. 中国变形高温合金研制进展 [J]. 航空材料学报, 2016, 36(3): 27)
doi: 10.11868/j.issn.1005-5053.2016.3.005
[17] Fu R, Chen X C, Ren H, et al. Structure and hot deformation behavior of ESR-CDS René88DT [J]. J. Aeronaut. Mater., 2011, 31(3): 8
[17] (付 锐, 陈希春, 任 昊等. 电渣重熔连续定向凝固René88DT合金的组织与热变形行为 [J]. 航空材料学报, 2011, 31(3): 8)
[18] Zhou Y H, Liu Y C, Zhou X S, et al. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review [J]. J. Mater. Sci. Technol., 2017, 33: 1448
[19] Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1996, 14: 1136
doi: 10.1016/0001-6160(66)90207-0
[20] Zhang H J, Li C, Liu Y C, et al. Precipitation behavior during high-temperature isothermal compressive deformation of Inconel 718 alloy [J]. Mater. Sci. Eng., 2016, A677: 515
[21] Wen D X, Lin Y C, Li X H, et al. Hot deformation characteristics and dislocation substructure evolution of a nickel-base alloy considering effects of δ phase [J]. J. Alloys Compd., 2018, 764: 1008
doi: 10.1016/j.jallcom.2018.06.146
[22] Wu Y T, Liu Y C, Li C, et al. Deformation behavior and processing maps of Ni3Al-based superalloy during isothermal hot compression [J]. J. Alloys Compd., 2017, 712: 687
doi: 10.1016/j.jallcom.2017.04.116
[23] Prasad Y V R K, Sasidhara S. Hot Working Guide: A Compendium of Processing Maps [M]. Materials Park, OH: ASM International, 1997: 1224
[24] Monajati H, Taheri A K, Jahazi M, et al. Deformation characteristics of isothermally forged UDIMET 720 nickel-base superalloy [J]. Metall. Mater. Trans., 2005, 36A: 895
[25] Wu J, Liu Y C, Li C, et al. Recent progress of microstructure evolution and performance of multiphase Ni3Al-based intermetallic alloy with high Fe and Cr contents [J]. Acta Metall. Sin., 2020, 56: 21
[25] (吴 静, 刘永长, 李 冲等. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展 [J]. 金属学报, 2020, 56: 21)
[26] Lin Y C, Huang J, He D G, et al. Phase transformation and dynamic recrystallization behaviors in a Ti55511 titanium alloy during hot compression [J]. J. Alloys Compd., 2019, 795: 471
doi: 10.1016/j.jallcom.2019.04.319
[27] Wang X G, Han G M, Cui C Y, et al. On the γ′ precipitates of the normal and inverse Portevin-Le Châtelier effect in a wrought Ni-base superalloy [J]. J. Mater. Sci. Technol., 2019, 35: 84
doi: 10.1016/j.jmst.2018.09.014
[28] Chen M S, Zou Z H, Lin Y C, et al. Formation mechanism of large grains inside annealed microstructure of GH4169 superalloy by cellular automation method [J]. J. Mater. Sci. Technol., 2019, 35: 1403
doi: 10.1016/j.jmst.2018.11.026
[29] Wu J, Li C, Liu Y C, et al. Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni3Al-based superalloy [J]. Mater. Sci. Eng., 2019, A743: 623
[30] Popov A A. Effect of electronic nature and substitution behavior of ternary microadditions on the ductility of polycrystalline nickel aluminides [J]. Acta Mater., 1997, 45: 1613
doi: 10.1016/S1359-6454(96)00271-6
[31] Wu Y T, Liu Y C, Li C, et al. Coarsening behavior of γ′ precipitates in the γ'+γ area of a Ni3Al-based alloy [J]. J. Alloys Compd., 2019, 771: 526
doi: 10.1016/j.jallcom.2018.08.265
[32] Dai L, Liu Z, Yu L M, et al. Microstructural characterization of Mg-Al-O rich nanophase strengthened Fe-Cr alloys [J]. Mater. Sci. Eng., 2020, A771: 138664
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[5] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[6] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[7] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[8] 陈润, 王帅, 安琦, 张芮, 刘文齐, 黄陆军, 耿林. 热挤压与热处理对网状TiBw/TC18复合材料组织及性能的影响[J]. 金属学报, 2022, 58(11): 1478-1488.
[9] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[10] 陈建军, 丁雨田, 王琨, 闫康, 马元俊, 王兴茂, 周胜名. Laves相对 GH3625合金管材热挤压过程中爆裂行为的影响[J]. 金属学报, 2021, 57(5): 641-650.
[11] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[12] 何长树, 郄默繁, 张志强, 赵骧. 轴向超声振动对搅拌摩擦焊过程中金属流动行为的影响[J]. 金属学报, 2021, 57(12): 1614-1626.
[13] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[14] 张瑞, 刘鹏, 崔传勇, 曲敬龙, 张北江, 杜金辉, 周亦胄, 孙晓峰. 国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望[J]. 金属学报, 2021, 57(10): 1215-1228.
[15] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.