|
|
850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究 |
张勇1( ), 李鑫旭1, 韦康1, 万志鹏1, 贾崇林1, 王涛1, 李钊1, 孙宇2, 梁红艳3 |
1 中国航发北京航空材料研究院先进高温结构材料重点实验室 北京 100095 2 哈尔滨工业大学材料科学与工程学院 哈尔滨 150001 3 天津大学材料科学与工程学院 天津 300354 |
|
Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc |
ZHANG Yong1( ), LI Xinxu1, WEI Kang1, WAN Zhipeng1, JIA Chonglin1, WANG Tao1, LI Zhao1, SUN Yu2, LIANG Hongyan3 |
1 Key Laboratory of Science & Technology on Advanced High Temperature Structural Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 3 School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China |
引用本文:
张勇, 李鑫旭, 韦康, 万志鹏, 贾崇林, 王涛, 李钊, 孙宇, 梁红艳. 850 ℃涡轮盘用新型变形高温合金GH4975挤压棒材热变形规律研究[J]. 金属学报, 2020, 56(10): 1401-1410.
Yong ZHANG,
Xinxu LI,
Kang WEI,
Zhipeng WAN,
Chonglin JIA,
Tao WANG,
Zhao LI,
Yu SUN,
Hongyan LIANG.
Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. Acta Metall Sin, 2020, 56(10): 1401-1410.
[1] |
Tian S F, Zhang G Q, Li Z, et al. The disk superalloys and disk manufacturing technologies for advanced aero engine [J]. J. Aeronaut. Mater., 2003, 23(suppl.1): 233
|
[1] |
(田世藩, 张国庆, 李 周等. 先进航空发动机涡轮盘合金及涡轮盘制造 [J]. 航空材料学报, 2003, 23(): 233)
|
[2] |
Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency [J]. Acta Metall. Sin., 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
|
[2] |
(刘永长, 张宏军, 郭倩颖等. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54: 1653)
doi: 10.11900/0412.1961.2018.00340
|
[3] |
Wang H P, Lü P, Cai X, et al. Rapid solidification kinetics and mechanical property characteristics of Ni-Zr eutectic alloys processed under electromagnetic levitation state [J]. Mater. Sci. Eng., 2020, A772: 138660
|
[4] |
Huang Q Y, Li H K. Superalloys [M]. Beijing: Metallurgical Industry Press, 2000: 4
|
[4] |
(黄乾尧, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000: 4)
|
[5] |
Luo J T, Yu W L, Xi C Y, et al. Preparation of ultrafine-grained GH4169 superalloy by high-pressure torsion and analysis of grain refinement mechanism [J]. J. Alloys Compd., 2019, 777: 157
doi: 10.1016/j.jallcom.2018.10.385
|
[6] |
Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52: 1259
doi: 10.11900/0412.1961.2016.00290
|
[6] |
(刘永长, 郭倩颖, 李 冲等. Inconel 718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52: 1259)
doi: 10.11900/0412.1961.2016.00290
|
[7] |
Zhang X, Li H W, Zhan M, et al. Electron force-induced dislocations annihilation and regeneration of a superalloy through electrical in-situ transmission electron microscopy observations [J]. J. Mater. Sci. Technol., 2020, 36: 79
doi: 10.1016/j.jmst.2019.08.008
|
[8] |
Zhang H J, Li C, Liu Y C, et al. Effect of hot deformation on γ" and δ phase precipitation of Inconel 718 alloy during deformation & isothermal treatment [J]. J. Alloys Compd., 2017, 716: 65
doi: 10.1016/j.jallcom.2017.05.042
|
[9] |
Kennedy R L. Allvac® 718PlusTM, superalloy for the next forty years [A]. Superalloys 718, 625, 706 and Derivatives 2005 [C]. Pittsburgh: TMS, 2005: 1
|
[10] |
Cao W D, Kennedy R. Role of chemistry in 718-type alloys-Allvac® 718PlusTM alloy development [A]. Superalloys 2004 [C]. Pittsburgh: TMS, 2004: 91
|
[11] |
Heaney J A, Lasonde M L, Powell A M, et al. Development of a new cast and wrought alloy (René 65) for high temperature disk applications [A]. Proceedings of the 8th International Symposium on Superalloy 718 and Derivatives [C]. New York: John Wiley & Sons, 2014: 67
|
[12] |
Devaux A, Picqué B, Gervais M F, et al. AD730TM—A new nickel-based superalloy for high temperature engine rotative parts [A]. Superalloys 2012 [C]. Pennsylvania: TMS, 2012: 911
|
[13] |
Gu Y F, Cui C Y, Yuan Y, et al. Research progress in a high performance cast & wrought superalloy for turbine disc applications [J]. Acta Metall. Sin., 2015, 51: 1191
doi: 10.11900/0412.1961.2015.00442
|
[13] |
(谷月峰, 崔传勇, 袁 勇等. 一种高性能航空涡轮盘用铸锻合金的研究进展 [J]. 金属学报, 2015, 51: 1191)
doi: 10.11900/0412.1961.2015.00442
|
[14] |
Bi Z N, Qin H L, Dong Z G, et al. Residual stress evolution and its mechanism during the manufacture of superalloy disk forgings [J]. Acta Metall. Sin., 2019, 55: 1160
doi: 10.11900/0412.1961.2019.00089
|
[14] |
(毕中南, 秦海龙, 董志国等. 高温合金盘锻件制备过程残余应力的演化规律及机制 [J]. 金属学报, 2019, 55: 1160)
doi: 10.11900/0412.1961.2019.00089
|
[15] |
Wang Z X, Huang S, Zhang B J, et al. Study on freckle of a high-alloyed GH4065 nickel base wrought superalloy [J]. Acta Metall. Sin., 2019, 55: 417
doi: 10.11900/0412.1961.2018.00218
|
[15] |
(王资兴, 黄 烁, 张北江等. 高合金化GH4065镍基变形高温合金点状偏析研究 [J]. 金属学报, 2019, 55: 417)
doi: 10.11900/0412.1961.2018.00218
|
[16] |
Du J H, Zhao G P, Deng Q, et al. Development of wrought superalloy in China [J]. J. Aeronaut. Mater. 2016, 36(3): 27
|
[16] |
(杜金辉, 赵光普, 邓 群等. 中国变形高温合金研制进展 [J]. 航空材料学报, 2016, 36(3): 27)
doi: 10.11868/j.issn.1005-5053.2016.3.005
|
[17] |
Fu R, Chen X C, Ren H, et al. Structure and hot deformation behavior of ESR-CDS René88DT [J]. J. Aeronaut. Mater., 2011, 31(3): 8
|
[17] |
(付 锐, 陈希春, 任 昊等. 电渣重熔连续定向凝固René88DT合金的组织与热变形行为 [J]. 航空材料学报, 2011, 31(3): 8)
|
[18] |
Zhou Y H, Liu Y C, Zhou X S, et al. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review [J]. J. Mater. Sci. Technol., 2017, 33: 1448
|
[19] |
Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1996, 14: 1136
doi: 10.1016/0001-6160(66)90207-0
|
[20] |
Zhang H J, Li C, Liu Y C, et al. Precipitation behavior during high-temperature isothermal compressive deformation of Inconel 718 alloy [J]. Mater. Sci. Eng., 2016, A677: 515
|
[21] |
Wen D X, Lin Y C, Li X H, et al. Hot deformation characteristics and dislocation substructure evolution of a nickel-base alloy considering effects of δ phase [J]. J. Alloys Compd., 2018, 764: 1008
doi: 10.1016/j.jallcom.2018.06.146
|
[22] |
Wu Y T, Liu Y C, Li C, et al. Deformation behavior and processing maps of Ni3Al-based superalloy during isothermal hot compression [J]. J. Alloys Compd., 2017, 712: 687
doi: 10.1016/j.jallcom.2017.04.116
|
[23] |
Prasad Y V R K, Sasidhara S. Hot Working Guide: A Compendium of Processing Maps [M]. Materials Park, OH: ASM International, 1997: 1224
|
[24] |
Monajati H, Taheri A K, Jahazi M, et al. Deformation characteristics of isothermally forged UDIMET 720 nickel-base superalloy [J]. Metall. Mater. Trans., 2005, 36A: 895
|
[25] |
Wu J, Liu Y C, Li C, et al. Recent progress of microstructure evolution and performance of multiphase Ni3Al-based intermetallic alloy with high Fe and Cr contents [J]. Acta Metall. Sin., 2020, 56: 21
|
[25] |
(吴 静, 刘永长, 李 冲等. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展 [J]. 金属学报, 2020, 56: 21)
|
[26] |
Lin Y C, Huang J, He D G, et al. Phase transformation and dynamic recrystallization behaviors in a Ti55511 titanium alloy during hot compression [J]. J. Alloys Compd., 2019, 795: 471
doi: 10.1016/j.jallcom.2019.04.319
|
[27] |
Wang X G, Han G M, Cui C Y, et al. On the γ′ precipitates of the normal and inverse Portevin-Le Châtelier effect in a wrought Ni-base superalloy [J]. J. Mater. Sci. Technol., 2019, 35: 84
doi: 10.1016/j.jmst.2018.09.014
|
[28] |
Chen M S, Zou Z H, Lin Y C, et al. Formation mechanism of large grains inside annealed microstructure of GH4169 superalloy by cellular automation method [J]. J. Mater. Sci. Technol., 2019, 35: 1403
doi: 10.1016/j.jmst.2018.11.026
|
[29] |
Wu J, Li C, Liu Y C, et al. Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni3Al-based superalloy [J]. Mater. Sci. Eng., 2019, A743: 623
|
[30] |
Popov A A. Effect of electronic nature and substitution behavior of ternary microadditions on the ductility of polycrystalline nickel aluminides [J]. Acta Mater., 1997, 45: 1613
doi: 10.1016/S1359-6454(96)00271-6
|
[31] |
Wu Y T, Liu Y C, Li C, et al. Coarsening behavior of γ′ precipitates in the γ'+γ area of a Ni3Al-based alloy [J]. J. Alloys Compd., 2019, 771: 526
doi: 10.1016/j.jallcom.2018.08.265
|
[32] |
Dai L, Liu Z, Yu L M, et al. Microstructural characterization of Mg-Al-O rich nanophase strengthened Fe-Cr alloys [J]. Mater. Sci. Eng., 2020, A771: 138664
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|