Please wait a minute...
金属学报  2018, Vol. 54 Issue (10): 1377-1386    DOI: 10.11900/0412.1961.2018.00062
  本期目录 | 过刊浏览 |
孪晶界在316L不锈钢三维晶界网络中的分布特征
刘廷光1, 夏爽2(), 白琴2, 周邦新2, 陆永浩1
1 北京科技大学国家材料服役安全科学中心 北京 100083
2 上海大学材料科学与工程学院 上海 200072
Distribution Characteristics of Twin-Boundaries in Three-Dimensional Grain Boundary Network of 316L Stainless Steel
Tingguang LIU1, Shuang XIA2(), Qin BAI2, Bangxin ZHOU2, Yonghao LU1
1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
2 School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
引用本文:

刘廷光, 夏爽, 白琴, 周邦新, 陆永浩. 孪晶界在316L不锈钢三维晶界网络中的分布特征[J]. 金属学报, 2018, 54(10): 1377-1386.
Tingguang LIU, Shuang XIA, Qin BAI, Bangxin ZHOU, Yonghao LU. Distribution Characteristics of Twin-Boundaries in Three-Dimensional Grain Boundary Network of 316L Stainless Steel[J]. Acta Metall Sin, 2018, 54(10): 1377-1386.

全文: PDF(5151 KB)   HTML
摘要: 

使用三维电子背散射衍射(3D-EBSD)技术对316L不锈钢的3D晶界网络进行表征分析,研究了孪晶界在三叉界角和四叉界角中的分布规律,以及孪晶界沿晶粒和沿晶界的分布规律,揭示孪晶界在316L不锈钢3D晶界网络中的分布特征。分析结果表明,316L不锈钢3D晶界网络中的孪晶界数量比低于面积比;大部分三叉界角中有1个或者没有孪晶界,含有2个孪晶界的三叉界角很少;大部分四叉界角中有1~2个孪晶界,含有3个孪晶界的四叉界角很少;每个3D晶粒平均有11个晶界面,其中孪晶界面数平均为2.03;平均每个晶界与9.35个晶界线接触,其中孪晶界个数平均为1.99。另外,从整个晶界网络层面上讨论了3D随机晶界网络的连通性问题。

关键词 316L不锈钢晶界网络孪晶界三叉界角四叉界角    
Abstract

Grain boundaries are sources of failure and weakness due to their relatively excess free volume compared to the lattice of polycrystalline materials exposed to aggressive environment. The control of grain boundary degradation has become one of the key issues of materials science and engineering. It has been found that the coincidence site lattice (CSL) boundaries, especially Σ3 (the twin boundaries), have stronger resistance to intergranular degradation than random boundaries. Materials with a high proportion of CSL boundaries that could disrupt the connectivity of random boundaries have better performance to resist intergranular failures. However, the distribution characteristics of twin boundaries in grain boundary network are still unclear. In this work, three-dimensional electron backscatter diffraction (3D-EBSD) was used to map the 3D grain boundary network of a 316L stainless steel. The topological characteristics of triple junction and quadruple junction in the presence of twin boundaries were investigated. The distribution of twin boundaries around grains and grain boundaries was analyzed. The results show that the twin boundary number fraction in the 3D grain boundary network is lower than the measured twin boundary area fraction, indicating that the average area per twin boundary is larger than random boundary. Most of triple junctions in the 316L stainless steel have one twin boundary. The proportion of triple junctions with two twin boundaries is about 9.4%. A quadruple junction has three twin boundaries at most. Most of quadruple junctions have one or two twin boundaries. About 7.9% of quadruple junctions have three twin boundaries. The 3D-EBSD data of 316L includes 1840 grains, 7353 random boundaries and 1824 twin boundaries. On average, a 3D grain in the 3D microstructure has 11 faces (39.85 neighboring faces that includes all boundaries of the grain and all boundaries that connected with the grain by lines or points), in which the number of twin boundaries is 2.03 (8.02) on average. A 3D grain boundary has 9.35 neighboring boundaries, in which the number of twin boundaries is 1.99 on average.

Key words316L stainless steel    grain boundary network    twin boundary    triple junction    quadruple junction
收稿日期: 2018-02-12     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目Nos.51701017和51671122,中央高校基本科研业务费专项资金项目No.FRF-TP-16-041A1以及北京市自然科学基金项目No.2182044
作者简介:

作者简介 刘廷光,男,1986年生,博士

图1  连续截面法采集三维电子背散射衍射(3D-EBSD)区域示意图
图2  重构的3D-EBSD显微组织和3D晶界网络
图3  三叉界角3D示意图
图4  316L不锈钢3D-EBSD显微组织中3个典型的三叉界角实例
图5  四叉界角3D示意图
图6  孪晶界在四叉界角中的5种分布情况3D示意图
图7  316L不锈钢3D-EBSD显微组织中5个典型四叉界角实例
图8  3D晶粒的晶界数与孪晶界数关系统计及其线性拟合
图9  3D晶粒的邻接晶界数与邻接孪晶界数关系统计及其线性拟合
图10  3D晶界的邻接晶界数与邻接孪晶界数关系统计及其线性拟合
图11  316L不锈钢第100层2D EBSD图中的CSL晶界网络和随机晶界网络
图12  晶间裂纹3D示意图及所测316L不锈钢的3D随机晶界网络和3D孪晶界网络
图13  孪晶界在3D晶界网络中的分布统计
图14  316L不锈钢中各类型三叉界角与四叉界角比例统计
[1] Cahn R W.The Coming of Materials Science[M]. Oxford: Pergamon, 2001: 213
[2] Meyers M A, Chawla K K.Mechanical Behavior of Materials [M]. 2nd Ed., Cambridge: Cambridge University Press, 2009: 346
[3] Bhandari Y, Sarkar S, Groeber M, et al.3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis[J]. Comput. Mater. Sci., 2007, 41: 222
[4] Liu T G, Xia S, Bai Q, et al.Morphological characteristics and size distributions of three-dimensional grains and grain boundaries in 316L stainless steel[J]. Acta Metall. Sin., 2018, 54: 868(刘廷光, 夏爽, 白琴等. 316L不锈钢的三维晶粒与晶界形貌特征及尺寸分布[J]. 金属学报, 2018, 54: 868)
[5] Ullah A, Liu G Q, Luan J H, et al.Three-dimensional visualization and quantitative characterization of grains in polycrystalline iron[J]. Mater. Charact., 2014, 91: 65
[6] Gottstein G, Shvindlerman L S.Grain boundary junction engineering[J]. Scr. Mater., 2006, 54: 1065
[7] Frary M, Schuh C A.Connectivity and percolation behaviour of grain boundary networks in three dimensions[J]. Philos. Mag., 2005, 85: 1123
[8] Gertsman V Y.Coincidence site lattice theory of multicrystalline ensembles[J]. Acta Crystallogr., 2001, 57A: 649
[9] Li S F, Mason J K, Lind J, et al.Quadruple nodes and grain boundary connectivity in three dimensions[J]. Acta Mater., 2014, 64: 220
[10] Reed B W, Minich R W, Rudd R E, et al.The structure of the cubic coincident site lattice rotation group[J]. Acta Crystallogr., 2004, 60A: 263
[11] Randle V.The Role of the Coincidence Site Lattice in Grain Boundary Engineering [M]. London: Cambridge University Press, 1996: 1
[12] Liu T G, Xia S, Bai Q, et al.Three-dimensional study of grain boundary engineering effects on intergranular stress corrosion cracking of 316 stainless steel in high temperature water[J]. J. Nucl. Mater., 2018, 498: 290
[13] Hu C L, Xia S, Li H, et al.Effect of grain boundary network on the intergranular stress corrosion cracking of 304 stainless steel[J]. Acta Metall. Sin., 2011, 47: 939(胡长亮, 夏爽, 李慧等. 晶界网络特征对304不锈钢晶间应力腐蚀开裂的影响[J]. 金属学报, 2011, 47: 939)
[14] Zhang Z L, Xia S, Cao W, et al.Effects of grain boundary character on intergranular stress corrosion cracking initiation in 316 stainless steel[J]. Acta Metall. Sin., 2016, 52: 313(张子龙, 夏爽, 曹伟等. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响[J]. 金属学报, 2016, 52: 313)
[15] Gertsman V Y, Bruemmer S M.Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys[J]. Acta Mater., 2001, 49: 1589
[16] Shi F, Tian P C, Jia N, et al.Improving intergranular corrosion resistance in a nickel-free and manganese-bearing high-nitrogen austenitic stainless steel through grain boundary character distribution optimization[J]. Corros. Sci., 2016, 107: 49
[17] Hu C L, Xi S, Li H, et al.Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control[J]. Corros. Sci., 2011, 53: 1880
[18] Kobayashi S, Kobayashi R, Watanabe T.Control of grain boundary connectivity based on fractal analysis for improvement of intergranular corrosion resistance in SUS316L austenitic stainless steel[J]. Acta Mater., 2016, 102: 397
[19] Jothi S, Merzlikin S V, Croft T N, et al.An investigation of micro-mechanisms in hydrogen induced cracking in nickel-based superalloy 718[J]. J. Alloys Compd., 2016, 664: 664
[20] Xia S, Li H, Liu T G, et al.Appling grain boundary engineering to Alloy 690 tube for enhancing intergranular corrosion resistance[J]. J. Nucl. Mater., 2011, 416: 303
[21] Deepak K, Mandal S, Athreya C N, et al.Implication of grain boundary engineering on high temperature hot corrosion of alloy 617[J]. Corros. Sci., 2016, 106: 293
[22] Li H, Xia S, Zhou B X, et al.The dependence of carbide morphology on grain boundary character in the highly twinned Alloy 690[J]. J. Nucl. Mater., 2010, 399: 108
[23] Watanabe T.An approach to grain boundary design for strong and ductile polycrystals[J]. Res. Mech., 1984, 11: 47
[24] Lin P, Palumbo G, Erb U, et al.Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600[J]. Scr. Metall. Mater., 1995, 33: 1387
[25] Lehockey E M, Limoges D, Palumbo G, et al.On improving the corrosion and growth resistance of positive Pb-acid battery grids by grain boundary engineering[J]. J. Power Sources, 1999, 78: 79
[26] Watanabe T.Grain boundary engineering: Historical perspective and future prospects[J]. J. Mater. Sci., 2011, 46: 4095
[27] Randle V.Grain boundary engineering: An overview after 25 years[J]. Mater. Sci. Technol., 2010, 26: 253
[28] Michiuchi M, Kokawa H, Wang Z J, et al.Twin-induced grain boundary engineering for 316 austenitic stainless steel[J]. Acta Mater., 2006, 54: 5179
[29] Randle V.Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials[J]. Acta Mater., 1999, 47: 4187
[30] Randle V, Coleman M.A study of low-strain and medium-strain grain boundary engineering[J]. Acta Mater., 2009, 57: 3410
[31] Liu T G, Xia S, Li H, et al.Effect of the pre-existing carbides on the grain boundary network during grain boundary engineering in a nickel based alloy[J]. Mater. Charact., 2014, 91: 89
[32] Liu T G, Xia S, Shoji T, et al.The topology of three-dimensional grain boundary network and its influence on stress corrosion crack propagation characteristics in austenitic stainless steel in a simulated BWR environment[J]. Corros. Sci., 2017, 129: 161
[33] Groeber M A, Jackson M A.DREAM.3D: A digital representation environment for the analysis of microstructure in 3D[J]. Integr. Mater. Manuf. Innov., 2014, 3: 5
[34] Brandon D G.The structure of high-angle grain boundaries[J]. Acta Metall., 1966, 14: 1479
[35] Ankem S, Pande C S, Ovid'ko I, et al. Science and Technology of Interfaces[M]. Hoboken: John Wiley & Sons, Inc., 2002: 387
[36] Marrow T J, Babout L, Jivkov A P, et al.Three dimensional observations and modelling of intergranular stress corrosion cracking in austenitic stainless steel[J]. J. Nucl. Mater., 2006, 352: 62
[1] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[2] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[3] 李丹, 李杨, 陈荣生, 倪红卫. 不锈钢网上水热制备NiCo2O4/MoS2纳米复合结构及其在电解水制氢中的应用[J]. 金属学报, 2018, 54(8): 1179-1186.
[4] 钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.
[5] 刘廷光, 夏爽, 白琴, 周邦新. 316L不锈钢的三维晶粒与晶界形貌特征及尺寸分布[J]. 金属学报, 2018, 54(6): 868-876.
[6] 郭舒,韩恩厚,王海涛,张志明,王俭秋. 核电站316L不锈钢弯头应力腐蚀行为的寿命预测[J]. 金属学报, 2017, 53(4): 455-464.
[7] 马广璐, 崔新宇, 沈艳芳, NuriaCINCA, JosepM.GUILEMANY, 熊天英. 基体材料力学性能对316L不锈钢颗粒沉积行为的影响*[J]. 金属学报, 2016, 52(12): 1610-1618.
[8] 魏宇杰. 纳米金属材料的界面力学行为研究*[J]. 金属学报, 2014, 50(2): 183-190.
[9] 周昊飞, 曲绍兴. 利用分子动力学研究梯度纳米孪晶Cu的微观变形机理*[J]. 金属学报, 2014, 50(2): 226-230.
[10] 王媛媛, 陈立佳, 王宝森. 温度对625镍基高温合金焊接接头低周疲劳行为的影响[J]. 金属学报, 2014, 50(12): 1485-1490.
[11] 刘侠和, 吴欣强, 韩恩厚. 温度对国产核级316L不锈钢在加Zn水中电化学腐蚀性能的影响*[J]. 金属学报, 2014, 50(1): 64-70.
[12] 张利涛,王俭秋. 国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为[J]. 金属学报, 2013, 49(8): 911-916.
[13] 喇培清,孟倩,姚亮,周毛熊,魏玉鹏. Al元素对热轧316L不锈钢显微组织和力学性能的影响[J]. 金属学报, 2013, 49(6): 739-744.
[14] 赵帅 李秀艳 戎利建. 一种奥氏体FeNi基合金中的锯齿流变现象[J]. 金属学报, 2011, 47(8): 1017-1021.
[15] 刘廷光 夏爽 李慧 周邦新 陈文觉. 690合金原始晶粒尺寸对晶界工程处理后晶界网络的影响[J]. 金属学报, 2011, 47(7): 859-864.