Please wait a minute...
金属学报  2018, Vol. 54 Issue (7): 969-980    DOI: 10.11900/0412.1961.2017.00461
  本期目录 | 过刊浏览 |
Incoloy 028合金不连续动态再结晶中链状组织形成机理研究
钟茜婷1, 王磊1,2, 刘峰1()
1 西北工业大学凝固技术国家重点实验室 西安 710072
2 中国石油天然气集团公司石油管工程技术研究院 西安 710077
Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028
Xiting ZHONG1, Lei WANG1,2, Feng LIU1()
1 State Key Lab of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
2 Tubular Goods Research Institute of CNPC, Xi'an 710077, China
全文: PDF(17532 KB)   HTML
摘要: 

利用热力模拟、EBSD和TEM等方法,研究了Incoloy 028合金在1000~1150 ℃和0.001~1 s-1应变速率条件下的不连续动态再结晶(DDRX)行为,分析了DDRX过程中链状组织的形成机理。结果表明,随着变形温度降低或应变速率升高,体系发生传统型向链状型DDRX转变,其中传统型DDRX过程由晶粒长大主导,主要在三叉晶界处形核;链状型DDRX发生多层形核长大,其第一层形核机制为孪晶界辅助的原始晶界弓出形核,后续层为亚晶扭转与三叉晶界形核;孪晶界在辅助形核后消失以提高界面移动性,晶粒长大时再次形成以降低体系能量。

关键词 热变形不连续动态再结晶链状组织孪晶界亚晶界    
Abstract

During hot deformation, discontinuous dynamic recrystallization (DDRX) taking place by nucleation and growth in materials with low to medium stacking fault energies (SFEs), plays a crucial role in grain refinement, especially for the material with coarse grains. In order to study the formation mechanism of typical microstructure (necklace structure) during DDRX, the behavior of Incoloy 028 alloy at temperature range of 1000~1150 ℃ and the strain rates of 0.001~1 s-1 was investigated by means of thermodynamic simulation, EBSD and TEM. The results show that with the decrease of deformation temperature or the increase of strain rate, the mechanism of DDRX is transformed from the traditional type nucleating at triple junctions, into necklace structure which dominated by the multilayer nucleation mechanism. The first strand of recrystallized grain is nucleated through the bulging of serrated grain boundaries which is assisted by twinning at the back of the fluctuation. With the increase of the true strain, the large strain gradient in the deformation band develops rapidly resulting in the transformation of the subgrain boundary into a high angle grain boundary, and then the second/followed layer nucleation occurs by the rotation of subboundaries accompanied with nucleation at triple junction. Twin boundaries are formed by strain-induced grain boundaries migration and disappeared after nucleation to enhance the recrystallization grain boundary mobility, and then formed again during growth to lower the interfacial energy of the system.

Key wordshot deformation    discontinuous dynamic recrystallization    necklace structure    twin boundary    subgrain boundary
收稿日期: 2017-11-01     
ZTFLH:  TG146.4  
基金资助:国家自然科学基金项目No.51431008,国家重点研发计划项目Nos.2017YFB0703001和2017YFB0305100,凝固技术国家重点实验室研究基金项目No.117-TZ-2015
作者简介:

作者简介 钟茜婷,女,1989年生,博士生

引用本文:

钟茜婷, 王磊, 刘峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究[J]. 金属学报, 2018, 54(7): 969-980.
Xiting ZHONG, Lei WANG, Feng LIU. Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028. Acta Metall Sin, 2018, 54(7): 969-980.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00461      或      https://www.ams.org.cn/CN/Y2018/V54/I7/969

图1  Incoloy 028合金初始微观组织
图2  Incoloy 028合金不同变形条件下的流变应力曲线
图3  真应变为0.916、应变速率ε˙=0.1 s-1时,Incoloy 028合金在不同变形温度下的显微组织
图4  真应变为0.916、变形温度为1100 ℃时,Incoloy 028合金不同应变速率下的显微组织
图5  Incoloy 028合金在不同变形条件,真应变为0.916下的TEM像
图6  1150 ℃、0.01 s-1变形,不同真应变下Incoloy 028合金微观组织演变
图7  1100 ℃、1 s-1变形,Incoloy 028合金不同真应变下的微观组织演变
图8  在1150 ℃、0.01 s-1变形条件下,Incoloy 028合金OIM图及晶粒内部不同方向上取向差的演化规律
图9  1100 ℃、1 s-1变形条件下,Incoloy 028合金晶粒内部不同方向上取向差的演化规律
图10  不同变形条件下Incoloy 028合金各取向差角范围的含量及孪晶界密度对比
[1] Humphrey F J, Hatherly M.Recrystallization and Related Annealing Phenomena [M]. 2nd Ed., Oxford: Pergamon Press, 2004: 427
[2] Sakai T, Belyakov A, Kaibyshev R, et al.Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions[J]. Prog. Mater. Sci., 2014, 60: 130
[3] Sakai T, Jonas J J.Dynamic recrystallization: Mechanical and microstructural considerations[J]. Acta Metall., 1984, 32: 189
[4] Jonas J J, Sellars C M, Tegart W J M. Strength and structure under hot-working conditions[J]. Metall. Rev., 1969, 14: 1
[5] Doherty R D, Hughes D A, Humphreys F J, et al.Current issues in recrystallization: A review[J]. Mater. Sci. Eng., 1997, A238: 219
[6] Huang K, Logé R E.A review of dynamic recrystallization phenomena in metallic materials[J]. Mater. Des., 2016, 111: 548
[7] Huang K, Marthinsen K, Zhao Q L, et al.The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials[J]. Prog. Mater. Sci., 2018, 92: 284
[8] Ponge D, Gottstein G.Necklace formation during dynamic recrystallization: Mechanisms and impact on flow behavior[J]. Acta Mater., 1998, 46: 69
[9] Belyakov A, Miura H, Sakai T.Dynamic recrystallization under warm deformation of polycrystalline copper[J]. ISIJ Int., 1998, 38: 595
[10] Wusatowska-Sarnek A M, Miura H, Sakai T. Nucleation and microtexture development under dynamic recrystallization of copper[J]. Mater. Sci. Eng., 2002, A323: 177
[11] Belyakov A, Miura H, Sakai T.Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel[J]. Mater. Sci. Eng., 1998, A255: 139
[12] Frommert M, Gottstein G.Mechanical behavior and microstructure evolution during steady-state dynamic recrystallization in the austenitic steel 800H[J]. Mater. Sci. Eng., 2009, A506: 101
[13] Li D F, Guo Q M, Guo S L, et al.The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy[J], Mater. Des., 2011, 32: 696
[14] Aretz W, Ponge D, Gottstein G.Evolution of necklace structures during hot compression of Ni3Al+B[J]. Scr. Metall. Mater., 1992, 27: 1593
[15] Jafari M, Najafizadeh A.Correlation between Zener-Hollomon parameter and necklace DRX during hot deformation of 316 stainless steel[J]. Mater. Sci. Eng., 2009, A501: 16
[16] Dudova N, Belyakov A, Sakai T, et al.Dynamic recrystallization mechanisms operating in a Ni-20%Cr alloy under hot-to-warm working[J]. Acta Mater., 2010, 58: 3624
[17] Karduck P, Gottstein G, Mecking H.Deformation structure and nucleation of dynamic recrystallization in copper single crystals[J]. Acta Metall., 1983, 31: 1525
[18] Brünger E, Wang X, Gottstein G.Nucleation mechanisms of dynamic recrystallization in austenitic steel alloy 800H[J]. Scr. Mater., 1998, 38: 1843
[19] Beladi H, Cizek P, Hodgson P D.Dynamic recrystallization of austenite in Ni-30 pct Fe model alloy: Microstructure and texture evolution[J]. Metall. Mater. Trans., 2009, 40A: 1175
[20] Zhu S Q, Yan H G, Liao X Z, et al.Mechanisms for enhanced plasticity in magnesium alloys[J]. Acta Mater., 2015, 82: 344
[21] Azarbarmas M, Aghaie-Khafri M, Cabrera A M, et al.Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718[J]. Mater. Sci. Eng., 2016, A678: 137
[22] Miura H, Sakai T, Andiarwanto S, et al.Nucleation of dynamic recrystallization at triple junctions in polycrystalline copper[J]. Philos. Mag., 2005, 85: 2653
[23] Beck M, Morse M, Corolewski C, et al.Understanding the effect of grain boundary character on dynamic recrystallization in stainless steel 316L[J]. Metall. Mater. Trans., 2017, 48A: 3831
[24] Lu S Y, Kang X F.Nickel Based and Iron-Nickel Based Corrosion Resistant Alloy [M]. Beijing: Chemical Industry Press, 1989: 247(陆世英, 康喜范. 镍基及铁镍基耐蚀合金 [M]. 北京: 化学工业出版社, 1989: 247)
[25] Charnock W, Nutting J.The effect of carbon and nickel upon the stacking-fault energy of iron[J]. Met. Sci. J., 1967, 1: 123
[26] Vitos L, Korzhavyi P A, Johansson B.Evidence of large magnetostructural effects in austenitic stainless steels[J]. Phys. Rev. Lett., 2006, 96: 117210
[27] Lu J, Hultman L, Holmstr?m E, et al.Stacking fault energies in austenitic stainless steels[J]. Acta Mater., 2016, 111: 39
[28] Wang L, Liu F, Cheng J J, et al.Hot deformation characteristics and processing map analysis for nickel-based corrosion resistant alloy[J]. J. Alloys Compd., 2015, 623: 69
[29] Wang L, Liu F, Zuo Q, et al.Processing map and mechanism of hot deformation of a corrosion-resistant nickel-based alloy[J]. J. Mater. Eng. Perform., 2017, 26: 392
[30] Jonas J J, Quelennec X, Jiang L, et al.The Avrami kinetics of dynamic recrystallization[J]. Acta Mater., 2009, 57: 2748
[31] Wang L, Liu F, Zuo Q, et al.Prediction of flow stress for N08028 alloy under hot working conditions[J]. Mater. Des., 2013, 47: 737
[32] Chen L Q, Zhao Y, Xu X Q, et al.Dynamic recrystallization and precipitation behaviors of a kind of low carbon V-microalloyed steel[J]. Acta Metall. Sin., 2010, 46: 1215(陈礼清, 赵阳, 徐香秋等. 一种低碳钒微合金钢的动态再结晶与析出行为[J]. 金属学报, 2010, 46: 1215)
[33] Zhi Y, Liu X H, Yu H L, et al.Simulation of microstructure and properties evolution of micro alloyed steel during hot deformation by cellular automaton[J]. Acta Metall. Sin., 2011, 47: 1396(支颖, 刘相华, 喻海良等. 微合金钢热变形组织与性能演变的CA模拟[J]. 金属学报, 2011, 47: 1396)
[34] Zhao M L, Sun W R, Yang S L, et al.Hot deformation behavior of GH761 wrought Ni base superalloy[J]. Acta Metall. Sin., 2009, 45: 79(赵美兰, 孙文儒, 杨树林等. GH761变形高温合金的热变形行为[J]. 金属学报, 2009, 45: 79)
[35] Lin Y C, Chen M S, Zhong J.Prediction of 42CrMo steel flow stress at high temperature and strain rate[J]. Mech. Res. Commun., 2008, 35: 142
[36] Graetz K, Miessen C, Gottstein G.Analysis of steady-state dynamic recrystallization[J]. Acta Mater., 2014, 67: 58
[37] Bay B, Hansen N, Hughes D A, et al.Evolution of f.c.c. deformation structures in polyslip[J]. Acta Metall. Mater., 1992, 40: 205
[38] Hughes D A, Hansen N.High angle boundaries formed by grain subdivision mechanisms[J]. Acta Mater., 1997, 45: 3871
[39] Yanushkevich Z, Belyakov A, Kaibyshev R.Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773-1273 K[J]. Acta Mater., 2015, 82: 244
[40] Valiev R Z, Islamgaliev R K, Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J]. Prog. Mater. Sci., 2000, 45: 103
[41] Bozzolo N, Soua? N, Logé R E.Evolution of microstructure and twin density during thermomechanical processing in a γ-γ' nickel-based superalloy[J]. Acta Mater., 2012, 60: 5056
[42] Grube W L, Rouze S R.The origin, growth and annihilation of annealing twins in austenite[J]. Can. Metall. Q., 1963, 2: 31
[43] Mahajan S, Pande C S, Imam M A, et al.Formation of annealing twins in f.c.c. crystals[J]. Acta Mater., 1997, 45: 2633
[44] Meyers M A, Murr L E.A model for the formation of annealing twins in f.c.c. metals and alloys[J]. Acta Metall., 1978, 26: 951
[45] Randle V.Twinning-related grain boundary engineering[J]. Acta Mater., 2004, 52: 4067
[1] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[2] 万志鹏, 王涛, 孙宇, 胡连喜, 李钊, 李佩桓, 张勇. GH4720Li合金热变形过程动态软化机制[J]. 金属学报, 2019, 55(2): 213-222.
[3] 马凯, 张星星, 王东, 王全兆, 刘振宇, 肖伯律, 马宗义. SiC/2009Al复合材料的变形加工参数的优化仿真研究[J]. 金属学报, 2019, 55(10): 1329-1337.
[4] 苏煜森, 杨银辉, 曹建春, 白于良. 节Ni型2101双相不锈钢的高温热加工行为研究[J]. 金属学报, 2018, 54(4): 485-493.
[5] 刘廷光, 夏爽, 白琴, 周邦新, 陆永浩. 孪晶界在316L不锈钢三维晶界网络中的分布特征[J]. 金属学报, 2018, 54(10): 1377-1386.
[6] 张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响[J]. 金属学报, 2017, 53(11): 1469-1477.
[7] 王存宇,常颖,杨洁,赵坤民,董瀚. 热变形和淬火配分处理的复合作用对低碳合金钢马氏体相变机制的影响*[J]. 金属学报, 2015, 51(8): 913-919.
[8] 袁晓云, 陈礼清. 一种高锰奥氏体TWIP钢的高温热变形与再结晶行为*[J]. 金属学报, 2015, 51(6): 651-658.
[9] 李俊儒, 龚臣, 陈列, 佐辉, 刘雅政. 10Cr12Ni3Mo2VN超超临界机组用叶片钢的热变形行为[J]. 金属学报, 2014, 50(9): 1063-1070.
[10] 魏宇杰. 纳米金属材料的界面力学行为研究*[J]. 金属学报, 2014, 50(2): 183-190.
[11] 周昊飞, 曲绍兴. 利用分子动力学研究梯度纳米孪晶Cu的微观变形机理*[J]. 金属学报, 2014, 50(2): 226-230.
[12] 王媛媛, 陈立佳, 王宝森. 温度对625镍基高温合金焊接接头低周疲劳行为的影响[J]. 金属学报, 2014, 50(12): 1485-1490.
[13] 曹宇,邸洪双,张敬奇,马天军,张洁岑. 800H合金热变形行为及热加工性能研究[J]. 金属学报, 2013, 49(7): 811-821.
[14] 魏海莲,刘国权,肖翔,张明赫. 表观的和基于物理的35Mn2钢奥氏体热变形本构分析[J]. 金属学报, 2013, 49(6): 731-738.
[15] 夏苑 杨志刚 李昭东 张玉朵 张弛. 热变形对Fe-0.2C-2Mn合金γ→α转变动力学的影响及理论探讨[J]. 金属学报, 2012, 48(3): 271-276.