|
|
两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性 |
赵晓丽1,2, 张永健1, 邵成伟1, 惠卫军1( ), 董瀚2 |
1 北京交通大学机械与电子控制工程学院 北京 1000442 2 钢铁研究总院 北京 100081 |
|
Hydrogen Embrittlement of Intercritically AnnealedCold-Rolled 0.1C-5Mn Steel |
Xiaoli ZHAO1,2, Yongjian ZHANG1, Chengwei SHAO1, Weijun HUI1( ), Han DONG2 |
1 School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China 2 Central Iron and Steel Research Institute, Beijing 100081, China |
引用本文:
赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
Xiaoli ZHAO,
Yongjian ZHANG,
Chengwei SHAO,
Weijun HUI,
Han DONG.
Hydrogen Embrittlement of Intercritically AnnealedCold-Rolled 0.1C-5Mn Steel[J]. Acta Metall Sin, 2018, 54(7): 1031-1041.
[1] | Han Z Y, Zhang M D, Xu H F, et al.Research and application of high performance automobile steel[J]. Iron Steel, 2016, 51(2): 1(韩志勇, 张明达, 许海峰等. 高性能汽车钢组织性能特点及未来研发方向[J]. 钢铁, 2016, 51(2): 1) | [2] | Lee Y K, Han J.Current opinion in medium manganese steel[J]. Mater. Sci. Technol., 2015, 31: 843 | [3] | Suh D W, Kim S J.Medium Mn transformation-induced plasticity steels: Recent progress and challenges[J]. Scr. Mater., 2017, 126: 63 | [4] | Cao W Q, Wang C, Shi J, et al.Microstructure and mechanical properties of Fe-0.2C-5Mn steel processed by ART-annealing[J]. Mater. Sci. Eng., 2011, A528: 6661 | [5] | Han J, Lee S J, Jung J G, et al.The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel[J]. Acta Mater., 2014, 78: 369 | [6] | Cai Z H, Ding H, Kamoutsi H, et al.Interplay between deformation behavior and mechanical properties of intercritically annealed and tempered medium-manganese transformation-induced plasticity steel[J]. Mater. Sci. Eng., 2016, A654: 359 | [7] | Shao C W, Hui W J, Zhang Y J, et al.Microstructure and mechanical properties of hot-rolled medium-Mn steel containing 3% aluminum[J]. Mater. Sci. Eng., 2017, A682: 45 | [8] | Li N, Shi J, Wang C Y, et al.Effect of annealing time on microstructure and mechanical properties of a cold rolled medium manganese steel[J]. Trans. Mater. Heat Treat., 2011, 32(8): 74(李楠, 时捷, 王存宇等. 两相区退火时间对冷轧中锰钢组织和力学性能的影响[J]. 材料热处理学报, 2011, 32(8): 74) | [9] | Arlazarov A, Gouné M, Bouaziz O, et al.Evolution of microstructure and mechanical properties of medium Mn steels during double annealing[J]. Mater. Sci. Eng., 2012, A542: 31 | [10] | Yin H X, Zhao A M, Zhao Z Z, et al.Effect of annealing time on the microstructure and mechanical properties of a cold rolled medium-manganese TRIP steel[J]. J. Univ. Sci. Technol. Beijing, 2013, 35: 1158(尹鸿祥, 赵爱民, 赵征志等. 退火时间对冷轧中锰TRIP钢组织和力学性能的影响[J]. 北京科技大学学报, 2013, 35: 1158) | [11] | Wang C, Cao W Q, Yan Y, et al.Influences of austenization temperature and annealing time on duplex ultrafine microstructure and mechanical properties of medium Mn steel[J]. J. Iron Steel Res. Int., 2015, 22: 42. | [12] | Lee S, Shin S, Kwon M, et al.Tensile properties of medium Mn steel with a bimodal UFG α+γ and coarse δ-ferrite microstructure[J]. Metall. Mater. Trans., 2017, 48A: 1678 | [13] | Ronevich J A, De Cooman B C, Speer J G, et al. Hydrogen effects in prestrained transformation induced plasticity steel[J]. Metall. Mater. Trans., 2012, 43A: 2293 | [14] | Ryu J H, Chun Y S, Lee C S, et al.Effect of deformation on hydrogen trapping and effusion in TRIP-assisted steel[J]. Acta Mater., 2012, 60: 4085 | [15] | Han J, Nam J H, Lee Y K.The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel[J]. Acta Mater., 2016, 113: 1. | [16] | Wang M M, Tasan C C, Koyama M, et al.Enhancing hydrogen embrittlement resistance of lath martensite by introducing nano-films of interlath austenite[J]. Metall. Mater. Trans., 2015, 46A: 3797 | [17] | Van Dijk N H, Butt A M, Zhao L, et al. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling[J]. Acta Mater., 2005, 53: 5439 | [18] | Wang C, Shi J, Wang C Y, et al.Development of ultrafine lamellar ferrite and austenite duplex structure in 0.2C5Mn steel during ART-annealing[J]. ISIJ Int., 2011, 51: 651 | [19] | Lee S, Lee S J, De Cooman B C. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning[J]. Scr. Mater., 2011, 65: 225 | [20] | Takai K, Watanuki R.Hydrogen in trapping states innocuous to environmental degradation of high-strength steels[J]. ISIJ Int., 2003, 43: 520. | [21] | Wang M Q, Dong H, Hui W J, et al.Effect of hydrogen on notch tensile strength of high strength steel[J]. Trans. Mater. Heat Treat., 2006, 27(4): 57(王毛球, 董瀚, 惠卫军等. 氢对高强度钢缺口拉伸强度的影响[J]. 材料热处理学报, 2006, 27(4): 57) | [22] | Escobar D P, Depover T, Duprez L, et al.Combined thermal desorption spectroscopy, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel[J]. Acta Mater, 2012, 60: 2593 | [23] | Hui W J, Zhang Y J, Zhao X L, et al.Influence of cold deformation and annealing on hydrogen embrittlement of cold hardening bainitic steel for high strength bolts[J]. Mater. Sci. Eng., 2016, A662: 528 | [24] | Nagumo M, Takai K, Okuda N. Nature of hydrogen trapping sites in steels induced by plastic deformation [J]. J. Alloys Compd., 1999, 293-295: 310 | [25] | Suzuki N, Ishii N, Tuchida Y.Diffusible hydrogen behavior in pre-strained high strength steel[J]. Tetsu Hagané, 1994, 80: 855(鈴木信一, 石井伸幸, 土田豊. 高張力鋼の拡散性水素の挙動に及ぼす塑性歪の影響[J]. 鉄と鋼, 1994, 80: 855) | [26] | Zhao J W, Jiang Z Y, Lee C S.Effects of tungsten on the hydrogen embrittlement behaviour of microalloyed steels[J]. Corros. Sci., 2014, 82: 380 | [27] | Lee S M, Park I J, Jung J G, et al.The effect of Si on hydrogen embrittlement of Fe-18Mn-0.6C-xSi twinning-induced plasticity steels[J]. Acta Mater., 2016, 103: 264 | [28] | Shi J, Jun H, Wang C, et al.Ultrafine grained duplex structure developed by ART-annealing in cold rolled medium-Mn steels[J]. J. Iron Steel Res. Int., 2014, 21: 208 | [29] | Zhan W, Cao W Q, Hu J, et al.Intercritical rolling induced ultrafine lamellar structure and enhanced mechanical properties of medium-Mn steel[J]. J. Iron Steel Res. Int., 2014, 21: 551 | [30] | Takagi S, Toji Y, Yoshino M, et al.Hydrogen embrittlement resistance evaluation of ultra high strength steel sheets for automobiles[J]. ISIJ Int., 2012, 52: 316 | [31] | Matsuoka S, Homma N, Tanaka H, et al.Effect of hydrogen on the tensile properties of 900 MPa-class JIS-SCM435 low-alloy-steel for use in storage cylinder of hydrogen station[J]. J. Jpn. Inst. Met., 2006, 70: 1002(松岡三郎, 本間紳浩, 田中裕之等. 900 MPa級低合金鋼SCM435の引張特性に及ぼす水素の影響[J]. 日本金属学会誌, 2006, 70: 1002) | [32] | Michler T, Naumann J.Microstructural aspects upon hydrogen environment embrittlement of various bcc steels[J]. Int. J. Hydrogen Energy, 2010, 35: 821 | [33] | Chen J, Li C J, Zhang S H.Hydrogen embrittlement of cold drawn ferrite +martensite dual-phase steel[J]. J. Univ. Sci. Technol. Beijing, 1990, 12: 339(陈俊, 李承基, 章守华. 冷拔变形(F+M)型双相钢的氢脆[J]. 北京科技大学学报, 1990, 12: 339) | [34] | Li X F, Wang Y F, Zhang P, et al.Effect of pre-strain on hydrogen embrittlement of high strength steels[J]. Mater. Sci. Eng., 2014, A616: 116 | [35] | Zhu X, Zhang K, Li W, et al.Effect of retained austenite stability and morphology on the hydrogen embrittlement susceptibility in quenching and partitioning treated steels[J]. Mater. Sci. Eng., 2016, A658: 400 | [36] | Chan S L I, Lee H L, Yang J R. Effect of retained austenite on the hydrogen content and effective diffusivity of martensitic structure[J]. Metall. Trans., 1991, 22A: 2579 | [37] | Sun Y W, Chen J Z, Liu J.Study on hydrogen embrittlement susceptibility of 1000 MPa grade 0Cr16Ni5Mo steel[J]. Acta Metall. Sin., 2015, 51: 1315(孙永伟, 陈继志, 刘军. 1000 MPa级0Cr16Ni5Mo钢的氢脆敏感性研究[J]. 金属学报, 2015, 51: 1315) | [38] | Xu P G, Yin J, Zhang S Y.Tensile deformation behavior of hydrogen charged ultrahigh strength steel studied by in situ neutron diffraction[J]. Acta Metall. Sin., 2015, 51: 1297(徐平光, 殷匠, 张书彦. 充氢超高强度钢拉伸变形的原位中子衍射研究[J]. 金属学报, 2015, 51: 1297) | [39] | Wang C, Xu H F, Huang C X, et al.Evolution of ART-annealed microstructure and partition behavior of manganese in medium manganese steel[J]. J. Iron Steel Res. Int., 2016, 28(4): 38(王昌, 徐海峰, 黄崇湘等. 中锰钢逆相变退火组织的演变及锰的配分行为[J]. 钢铁研究学报, 2016, 28(4): 38) | [40] | Oudriss A, Creus J, Bouhattate J, et al.Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel[J]. Acta Mater., 2012, 60: 6814 | [41] | Bai Y, Momotani Y, Chen M C, et al.Effect of grain refinement on hydrogen embrittlement behaviors of high-Mn TWIP steel[J]. Mater. Sci. Eng., 2016, A651: 935 | [42] | Hui W J, Dong H, Weng Y Q, et al.Delayed fracture behavior of ultrafine grained high strength steel[J]. Acta Metall. Sin., 2004, 40: 561(惠卫军, 董瀚, 翁宇庆等. 超细晶粒超强度钢的延迟断裂行为[J]. 金属学报, 2004, 40: 561) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|