Please wait a minute...
金属学报  2018, Vol. 54 Issue (7): 1042-1050    DOI: 10.11900/0412.1961.2017.00421
  本期目录 | 过刊浏览 |
交流磁场致Al-Fe亚共晶合金熔体热电势变化的研究
张建锋1, 蓝青2, 乐启炽2()
1 东北大学理学院 沈阳 1108192
2 东北大学材料电磁过程教育部重点实验室 沈阳 110819
Investigation on the Change of Thermoelectric Power of Al-Fe Hypoeutectic Alloy Melt Caused by AC Magnetic Field
Jianfeng ZHANG1, Qing LAN2, Qichi LE2()
1 College of Sciences, Northeastern University, Shenyang 110819, China
2 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
全文: PDF(4778 KB)   HTML
摘要: 

研究了不同温度、不同励磁电流、不同磁场频率和不同加载时间条件下,交流磁场对Al-0.99%Fe (质量分数)亚共晶合金熔体热电势差(U)和熔体微观结构的影响。结果表明:交流磁场加载过程中,Al-0.99%Fe亚共晶合金熔体的U逐渐减小,交流磁场撤除后,减小的U经历了快速恢复和缓慢恢复过程。不同温度下,交流磁场对Al-0.99%Fe亚共晶合金熔体U的影响程度不同; 随着磁场频率的增大,交流磁场对Al-0.99%Fe亚共晶合金熔体U的影响逐渐减小;随着励磁电流和加载时间的增大,交流磁场对Al-0.99%Fe亚共晶合金熔体U的影响逐渐增大,但存在一个饱和加载时间。交流磁场导致Al-0.99%Fe亚共晶合金熔体的U变化与合金熔体淬火凝固组织中初生α-Al相尺寸变化之间存在相关性,因而可以用U的变化来表征交流磁场对Al-0.99%Fe亚共晶合金熔体微观结构的影响。

关键词 热电势热电势差交流磁场Al-0.99%Fe亚共晶合金    
Abstract

A lot of studies have shown that electromagnetic field can significantly refine the metal solidification structure, thus improve the deformation properties and functional performance of metallic materials. However, the mechanism of how electromagnetic field affects melt structure remains unclear, so an intensive study of the effects of electromagnetic field on melt structure is very important for an in-depth understanding of the essence of melt solidification under external electromagnetic field. The effect of alternating current (AC) magnetic field with different exciting currents, magnetic frequencies and loading time on the thermoelectric potential difference (U) and melt microstructure of Al-0.99%Fe (mass fraction) hypoeutectic alloy at different temperatures was investigated in this work. The results showed that AC magnetic field would lead to a decrease in U of liquid Al-0.99%Fe hypoeutectic alloy. When the magnetic field was removed, the decreased thermoelectric potential difference experienced a rapid recovery process and a poor recovery process to increase to the initial value. The influence of AC magnetic field on U was different at different temperatures. With the increase of the magnetic frequency, the influence of AC magnetic field on U decreased. And the influence of AC magnetic field on U increased with the increase of the exciting current and loading time, however, there was a saturated loading time. There was a correlation between the change of U of Al-0.99%Fe hypoeutectic alloy and the change of size of the primary α-Al phase caused by AC magnetic field, therefore, the change of thermoelectric potential difference could be used to characterize the effect of AC magnetic field on the microstructure of the alloy melt of Al-0.99%Fe hypoeutectic alloy.

Key wordsthermoelectric power    thermoelectric potential difference    AC magnetic field    Al-0.99%Fe hypoeutectic alloy
收稿日期: 2017-10-10     
ZTFLH:  TG113.12  
基金资助:中国博士后科学基金项目No.2015M571320以及中央高校基本科研业务费项目No.N150504002
作者简介:

作者简介 张建锋,男,1979年生,副教授,博士

引用本文:

张建锋, 蓝青, 乐启炽. 交流磁场致Al-Fe亚共晶合金熔体热电势变化的研究[J]. 金属学报, 2018, 54(7): 1042-1050.
Jianfeng ZHANG, Qing LAN, Qichi LE. Investigation on the Change of Thermoelectric Power of Al-Fe Hypoeutectic Alloy Melt Caused by AC Magnetic Field. Acta Metall Sin, 2018, 54(7): 1042-1050.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00421      或      https://www.ams.org.cn/CN/Y2018/V54/I7/1042

图1  实验装置示意图
图2  交流磁场对Al-0.99%Fe合金熔体热电势差的影响
图3  不同温度下热电势差特征参量的变化规律
图4  不同磁场频率下热电势差特征参量的变化规律
图5  不同励磁电流下热电势差特征参量的变化规律
图6  不同加载时间下热电势差特征参量的变化规律
图7  有无磁场条件下不同温度的Al-0.99%Fe合金熔体淬火凝固组织
图8  磁致Al-0.99%Fe合金热电势差残余变化量与初生α-Al平均尺寸变化量随温度的变化曲线
[1] Hou L G, Liu M L, Wang X D, et al.Cryogenic processing high-strength 7050 aluminum alloy and controlling of the microstructures and mechanical properties[J]. Acta Metall. Sin., 2017, 53: 1075(侯陇刚, 刘明荔, 王新东等. 高强7050铝合金超低温大变形加工与组织、性能调控[J]. 金属学报, 2017, 53: 1075)
[2] Jia P, Wang E G, Lu H, et al.Effect of electromagnetic field on micro-structure and mechanical property for Inconel 625 superalloy[J]. Acta Metall. Sin., 2013, 49: 1573(贾鹏, 王恩刚, 鲁辉等. 电磁场对Inconel 625合金凝固组织及力学性能的影响[J]. 金属学报, 2013, 49: 1573)
[3] Li X, Ren Z M, Fautrelle Y.Phase distribution and phase structure control through a high gradient magnetic field during the solidification process[J]. Mater. Des., 2008, 29: 1796
[4] Gillon P.Uses of intense d.c. magnetic fields in materials processing[J]. Mater. Sci. Eng., 2000, A287: 146
[5] Chen DD, Zhang H T, Wang X J, et al.Investigation on microsegregation of Al-4.5%Cu alloy produced by low frequency electromagnetic casting[J]. Acta Metall. Sin., 2011, 47: 185(陈丹丹, 张海涛, 王向杰等. 低频电磁铸造Al-4.5%Cu合金微观偏析研究[J]. 金属学报, 2011, 47: 185)
[6] Liu X, Zhang J F, Li H Y, et al.Electrical resistivity behaviors of liquid Pb-Sn binary alloy in the presence of ultrasonic field[J]. Ultrasonics, 2015, 55: 6
[7] Xu X J, Deng A Y, Wang E G, et al.Evolvement mechanism of surface oscillation marks on round billet during soft-contact electromagnetic continuous casting[J]. Acta Metall. Sin., 2009, 45: 464(许秀杰, 邓安元, 王恩刚等. 电磁软接触连铸圆坯表面振痕演变机理[J]. 金属学报, 2009, 45: 464)
[8] Zhang H T, Nagaumi H, Zuo Y B, et al.Coupled modeling of electromagnetic field, fluid flow, heat transfer and solidification during low frequency electromagnetic casting of 7XXX aluminum alloys: Part 1: Development of a mathematical model and comparison with experimental results[J]. Mater. Sci. Eng., 2007, A448: 189
[9] Zhang T, Ren W L, Dong J W, et al.Effect of high magnetic field on the primary dendrite arm spacing and segregation of directionally solidified superalloy DZ417G[J]. J. Alloys Compd., 2009, 487: 612
[10] Li M J, Tamura T, Miwa K.Controlling microstructures of AZ31 magnesium alloys by an electromagnetic vibration technique during solidification: From experimental observation to theoretical understanding[J]. Acta Mater., 2007, 55: 4635
[11] Wang Q, Li Y X.Theoretical study of electrical transport properties of liquid metals and alloys[J]. Mater. Rev., 2001, 15(8): 7(王强, 李言祥. 液态金属电子输运性质的理论研究[J]. 材料导报, 2001, 15(8): 7)
[12] Wang Q, Lu K Q, Li Y X.The relationship between electrical resistivity, thermopower and temperature for liquid InSb[J]. Acta Phys. Sin., 2001, 50: 1355(王强, 陆坤权, 李言祥. 液态InSb电阻率和热电势与温度的关系[J]. 物理学报, 2001, 50: 1355)
[13] Yakubtsov I A.Effects of composition and microstructure on behaviors of electrical resistivity during continuous heating above room temperature in Mg-based alloys[J]. J. Alloys Compd., 2010, 492: 153
[14] Chung D D L. Thermal analysis by electrical resistivity measurement[J]. J. Therm. Anal. Calorim., 2001, 65: 153
[15] Richardsen T, Loh?fer G, Egry I.Electrical resistivity of undercooled liquid Cu-Ni alloys[J]. Int. J. Thermophys., 2002, 23: 1207
[16] Abdellah A B, Grosdidier B, Osman S M, et al.Spin-state dependence of electrical resistivity and thermoelectric power of molten Al-Mn alloys: Experiment and theory[J]. J. Alloys Compd., 2016, 658: 1010
[17] Zu F Q, Shen R R, Xi Y, et al.Electrical resistivity of liquid Sn-Sb alloy[J]. J. Phys. Condens. Matter, 2006, 18: 2817
[18] Gaffar M A, Gaber A, Mostafa M S, et al.The effect of Cu addition on the thermoelectric power and electrical resistivity of Al-Mg-Si balanced alloy: A correlation study[J]. Mater. Sci. Eng., 2007, A465: 274
[19] Deng Y B, Geng H R, Wang Z M, et al.Recent research progress on structure sensitive properties of metal melt based on liquid structure changing[J]. Met. World, 2010, (1): 49(邓延波, 耿浩然, 王致明等. 基于液态结构变化的金属熔体结构敏感物性的研究进展[J]. 金属世界, 2010, (1): 49)
[20] Giuseppe G, Giuseppe P P.Solid State Physics [M]. Amsterdam: Academic Press, 2006: 419
[21] Cong H R, Bian X F, Li H, et al.Medium-range order structure in liquid Al80Fe20 alloy[J]. Acta Phys. Chim. Sin., 2002, 18: 39(丛红日, 边秀房, 李辉等. 液态Al80Fe20合金的中程有序结构[J]. 物理化学学报, 2002, 18: 39)
[22] Anderson P W.Absence of diffusion in certain random lattices[J]. Phys. Rev., 1958, 109: 1492
[1] 张建锋,蓝青,郭瑞臻,乐启炽. 交流磁场对过共晶Al-Fe合金初生相的影响[J]. 金属学报, 2019, 55(11): 1388-1394.
[2] 张建锋,王红玲,乐启炽,巴启先,崔建忠. 直流磁场作用下液态铝合金热电势的变化[J]. 金属学报, 2013, 49(9): 1069-1074.
[3] 张建锋,乐启炽,崔建忠. 交流磁场对Sn-20%Pb合金电阻的影响[J]. 金属学报, 2013, 49(1): 101-106.