Please wait a minute...
金属学报  2018, Vol. 54 Issue (5): 627-636    DOI: 10.11900/0412.1961.2017.00537
  金属材料的凝固专刊 本期目录 | 过刊浏览 |
液态金属深过冷快速凝固过程中初生固相的重熔
李金富1,2(), 周尧和1
1上海交通大学材料科学与工程学院金属基复合材料国家重点实验室 上海 200240
2上海交通大学材料科学与工程学院上海市激光制造与材料改性重点实验室 上海 200240
Remelting of Primary Solid in Rapid Solidification of Deeply Undercooled Alloy Melts
Jinfu LI1,2(), Yaohe ZHOU1
1 State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2 Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
Jinfu LI, Yaohe ZHOU. Remelting of Primary Solid in Rapid Solidification of Deeply Undercooled Alloy Melts[J]. Acta Metall Sin, 2018, 54(5): 627-636.

全文: PDF(972 KB)   HTML
摘要: 

深过冷液态金属(合金)凝固时伴随有显著的温度再辉,初生固相因此不可避免地部分被重熔,从而影响到最终凝固组织形态。近年来,过冷熔体中晶体生长理论模型不断完善,使得定量分析初生固相重熔程度随过冷度的变化规律成为可能,本文即对这方面的研究工作进展进行综述,并结合某些合金在不同过冷度下晶体生长行为及其凝固组织的实验结果,对典型非平衡凝固组织的形成机制进行阐述。

关键词 深过冷快速凝固固相重熔微观组织    
Abstract

Solidification of deeply undercooled alloy melts proceeds with obvious temperature recalescence, during which part of primary solid is inevitably remelted, and the microstructural morphology is inevitably changed. During past decades, great improvement was achieved in modelling crystal growth in undercooled alloy melts, making it possible to quantitatively evaluate the remelting degree of primary solid at different undercoolings. In this paper, the progress in modelling the remelting of primary solid was introduced, and the variation of remelted fraction of primary solid as a function of the alloy feature and undercooling was presented. In combination with experimental results of crystal growth pattern and solidification structure in selected alloys, the mechanisms for grain refinement in undercooled single-phase alloys and anomalous eutectic formation in undercooled eutectic alloys were then discussed.

Key wordsdeep undercooling    rapid solidification    solid remelting    microstructure
收稿日期: 2017-12-14     
ZTFLH:  TG111  
基金资助:资助项目 国家自然科学基金项目Nos.51771116和51620105012
作者简介:

作者简介 李金富,男,1964年生,教授

图1  过冷熔体中分枝尖端沿轴向的温度分布与液相过冷度组成示意图[14]
图2  Ni75Cu25合金凝固时初生固相重熔分数和过冷度的关系[9]
图3  不同液相线斜率、平衡溶质分配系数和成分的共晶合金,共晶两相耦合生长时初生共晶重熔分数随过冷度的变化[14]
图4  Ni-18.7%Sn (原子分数)共晶合金深过冷快速凝固过程中初生相的重熔分数[30]
图5  Ni75Cu25合金晶粒度随过冷度的变化[9]
[1] Herlach D M.Non-equilibrium solidification of undercooled metallic metls[J]. Mater. Sci. Eng., 1994, R12: 177
[2] Wei B, Herlach D M, Sommer F, et al.Rapid solidification of undercooled eutectic and monotectic alloys[J]. Mater. Sci. Eng., 1993, A173: 357
[3] Battezzati L, Antonione C, Baricco M.Undercooling of Ni-B and Fe-B alloys and their metastable phase diagrams[J]. J. Alloys Compd., 1997, 247: 164
[4] Li J F, Lü Y L, Yang G C, et al.Directional solidification of undercooled melt[J]. Prog. Nat. Sci., 1997, 7: 736
[5] Yang C L, Liu F, Yang G C, et al.Structure evolution upon non-equilibrium solidification of bulk undercooled Fe-B system[J]. J. Cryst. Growth, 2009, 311: 404
[6] Drehman A J, Greer A L, Turnbull D.Bulk formation of a metallic glass: Pd40Ni40P20[J]. Appl. Phys. Lett., 1982, 41: 716
[7] Nishiyama N, Inoue A.Supercooling investigation and critical cooling rate for glass formation in Pd-Cu-Ni-P alloy[J]. Acta. Mater., 1999, 47: 1487
[8] Wei B B, Yang G C, Zhou Y H.High undercooling and rapid solidification of Ni-32.5%Sn eutectic alloy[J]. Acta Metall. Mater., 1991, 39: 1249
[9] Li J F, Liu Y C, Lu Y L, et al.Structural evolution of undercooled Ni-Cu alloys[J]. J. Cryst. Growth, 1998, 192: 462
[10] Kattamis T Z.Mechanism of establishment of cast microstructure during solidification of highly undercooled melts[J]. J. Cryst. Growth, 1976, 34: 215
[11] Li J F, Zhou Y H, Yang G C.Kinetic effect of crystal growth on the absolute stability of a planar interface in undercooled melts[J]. Mater. Res. Bull., 2000, 35: 1775
[12] Brener E, Müller-Krumbhaar H, Temkin D, et al.Morphology diagram of possible structures in diffusional growth[J]. Physica, 1998, 249A: 73
[13] Liu L, Li J F, Zhou Y H.Solidification interface morphology pattern in the undercooled Co-24.0at.%Sn eutectic melt[J]. Acta Mater., 2011, 59: 5558
[14] Wei X X, Lin X, Xu W, et al.Remelting-induced anomalous eutectic formation during solidification of deeply undercooled eutectic alloy melts[J]. Acta Mater., 2015, 95: 44
[15] Boettinger W J, Coriell S R, Trivedi R et al. Rapid Solidification Processing: Principles and Technologies IV [M]. Baton Rouge: Claitor's Publishing Division, 1988: 13
[16] Ivantsov G P.PIv is defined by Δ=PIvexp(PIv)E1(PIv), where E1(x) is the exponential integral function[J]. Dokl. Akad. Nauk. SSSR, 1947, 58: 567
[17] Langer J S, Müller-Krumbhaar H.Theory of dendritic growth—I. Elements of a stability analysis[J]. Acta Metall., 1978, 26: 1681
[18] Langer J S, Müller-Krumbhaar H.Theory of dendritic growth—II. Instabilities in the limit of vanishing surface tension[J]. Acta Metall., 1978, 26: 1689
[19] Müller-Krumbhaar H, Langer J S.Theory of dendritic growth—III. Effects of surface tension[J]. Acta Metall., 1978, 26: 1697
[20] Trivedi R, Kurz W.Morphological stability of a planar interface under rapid solidification conditions[J]. Acta Metall., 1986, 34: 1663
[21] Li J F, Jie W Q, Yang G C, et al.Solidification structure formation in undercooled Fe-Ni alloy[J]. Acta Mater., 2002, 50: 1797
[22] Jackson K A, Hunt J D.Lamellar and rod eutectic growth[J]. Trans. Metall. Soc. AIME, 1966, 236: 1129
[23] Trivedi R, Magnin P, Kurz W.Theory of eutectic growth under rapid solidification conditions[J]. Acta Metall., 1987, 35: 971
[24] Kurz W, Trivedi R.Eutectic growth under rapid solidification conditions[J]. Metall. Trans., 1991, 22A: 3051
[25] Li M J, Kuribayashi K.Nucleation-controlled microstructures and anomalous eutectic formation in undercooled Co-Sn and Ni-Si eutectic melts[J]. Metall. Mater. Trans., 2003, 34A: 2999
[26] Goetzinger R, Barth M, Herlach D M.Growth of lamellar eutectic dendrites in undercooled melts[J]. J. Appl. Phys., 1998, 84: 1643
[27] Li J F, Zhou Y H.Eutectic growth in bulk undercooled melts[J]. Acta Mater., 2005, 53: 2351
[28] Li M J, Nagashio K, Kuribayashi K.Reexamination of the solidification behavior of undercooled Ni-Sn eutectic melts[J]. Acta Mater., 2002, 50: 3241
[29] Yang C, Gao J, Zhang Y K, et al.New evidence for the dual origin of anomalous eutectic structures in undercooled Ni-Sn alloys: In situ observations and EBSD characterization[J]. Acta Mater., 2011, 59: 3915
[30] Li J F, Li X L, Liu L, et al.Mechanism of anomalous eutectic formation in the solidification of undercooled Ni-Sn eutectic alloy[J]. J. Mater. Res., 2008, 23: 2139
[31] Li J F, Jie W Q, Zhao S, et al.Structural evidence for the transition from coupled to decoupled growth in the solidification of undercooled Ni-Sn eutectic melt[J]. Metall. Mater. Trans., 2007, 38A: 1806
[32] Walker J L.The Physical Chemistry of Process Metallurgy[M]. New York: Interscience Publishers, 1959: 845
[33] Hunt J D, Jackson K A.Nucleation of solid in an undercooled liquid by cavitation[J]. J. Appl. Phys., 1966, 37: 254
[34] Horvay G.The tension field created by a spherical nucleus freezing into its less dense undercooled melt[J]. Int. J. Heat Mass. Transfer, 1965, 8: 195
[35] Kattamis T Z.Dendritic peculiarities in undercooled and internally chilled Fe-25 pct Ni alloy[J]. Metall. Trans., 1971, 2: 2000
[36] Powell G L F, Hogan L M. The influence of oxygen content on grain size of undercooled silver[J]. Trans. Met. Soc AIME, 1969, 245: 407
[37] Powell L F G. The undercooling of silver[J]. J. Aust. Inst. Met., 1965, 10: 3223
[38] Jones B L, Weston G M.Grain refinement in undercooled copper[J]. J. Aust. Inst. Met., 1970, 15: 3167
[39] Schwarz M, Karma A, Eckler K, et al.Physical mechanism of grain refinement in solidification of undercooled melts[J]. Phys. Rev. Lett., 1994, 73: 1380
[40] Li J F, Zhou Y H, Yang G C.Effect of solidification time on the structural evolution of undercooled single phase alloys[J]. J. Cryst. Growth, 1999, 206: 141
[41] Wilde G, G?rler G P, Willnecker R.Hypercooling of completely miscible alloys[J]. Appl. Phys. Lett., 1996, 69: 2995
[42] Lu S Y, Li J F, Li X L, et al.Grain boundaries in the refined solidification structure of undercooled Ni75Pd25[J]. Physica, 2008, 403B: 2609
[43] Lu S Y, Li J F, Zhou Y H.Recrystallization developed in the largely undercooled Ni54.6Pd45.4 alloy[J]. J. Alloys Compd., 2008, 458: 517
[44] Lu S Y, Li J F, Zhou Y H. Solidification structure of undercooled Ni54.6Pd45.4 alloy [J]. Mater. Sci. Eng., 2007, A460-461: 63
[45] Lu S Y, Li J F, Zhou Y H.Grain refinement in the solidification of undercooled Ni-Pd alloys[J]. J. Cryst. Growth, 2007, 309: 103
[46] Powell G L F, Hogen L M. Undercooling in silver-copper eutectic alloys[J]. J. Inst. Met., 1964, 93: 505
[47] Kattamis T Z, Flemings M C.Structure of undercooled Ni-Sn eutectic[J]. Metall. Mater. Trans., 1970, 1A: 1449
[48] Jones B L.Growth mechanisms in undercooled eutectics[J]. Metall. Trans., 1971, 2: 2950
[49] Liu X R, Cao C D, Wei B.Microstructure evolution and solidification kinetics of undercooled Co-Ge eutectic alloys[J]. Scr. Mater., 2002, 46: 13
[50] Liu F, Chen Y Z, Yang G C, et al.Competitions incorporated in rapid solidification of the bulk undercooled eutectic Ni78.6Si21.4 alloy[J]. J. Mater. Res., 2007, 22: 2953
[51] Wei B, Herlach D M, Sommer F, et al.Rapid solidification of undercooled eutectic and monotectic alloys[J]. Mater. Sci. Eng., 1993, A173: 355
[52] Goetzinger R, Barth M, Herlach D M.Mechanism of formation of the anomalous eutectic structure in rapidly solidified Ni-Si, Co-Sb and Ni-Al-Ti alloys[J]. Acta Mater., 1998, 46: 1647
[53] Lin X, Cao Y Q, Wang Z T, et al.Regular eutectic and anomalous eutectic growth behavior in laser remelting of Ni-30wt.%Sn alloys[J]. Acta Mater., 2017, 126: 210
[54] Clopet C R, Cochrane R F, Mullis A M.The origin of anomalous eutectic structures in undercooled Ag-Cu alloy[J]. Acta Mater., 2013, 61: 6894
[55] Clopet C R, Cochrane R F, Mullis A M.Spasmodic growth during the rapid solidification of undercooled Ag-Cu eutectic melts[J]. Appl. Phys. Lett., 2013, 102: 031906
[56] Zhao S, Li J F, Liu L, et al.Formation mechanism of anomalous eutectics in highly undercooled Ag-39.9at.%Cu alloy[J]. Chin. Phys., 2009, 18B: 1917
[57] Zhao S, Li J F, Liu L, et al.Cellular growth of lamellar eutectics in undercooled Ag-Cu alloy[J]. Mater. Charact., 2009, 60: 519
[58] Zhao S, Li J F, Liu L, et al.Eutectic growth from cellular to dendritic form in the undercooled Ag-Cu eutectic alloy melt[J]. J. Cryst. Grwoth, 2009, 311: 1387
[59] Huang Q S, Liu L, Wei X X, et al.Solidification behaviors of undercooled Ni-P alloys[J]. Acta Phys. Sin., 2012, 61: 166401(黄起森, 刘礼, 韦修勋等. 过冷Ni-P合金的凝固行为[J]. 物理学报, 2012, 61: 166401)
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[7] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[8] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[9] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[10] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[11] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[12] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[13] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[14] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.
[15] 何焕生, 余黎明, 刘晨曦, 李会军, 高秋志, 刘永长. 新一代马氏体耐热钢G115的研究进展[J]. 金属学报, 2022, 58(3): 311-323.