|
|
奥氏体/铁素体界面迁移与元素配分的研究进展 |
陈浩, 张璁雨( ), 朱加宁, 杨泽南, 丁然, 张弛, 杨志刚 |
清华大学材料学院教育部先进材料重点实验室 北京 100084 |
|
Austenite/Ferrite Interface Migration and Alloying Elements Partitioning: An Overview |
Hao CHEN, Congyu ZHANG( ), Jianing ZHU, Zenan YANG, Ran DING, Chi ZHANG, Zhigang YANG |
The Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China |
引用本文:
陈浩, 张璁雨, 朱加宁, 杨泽南, 丁然, 张弛, 杨志刚. 奥氏体/铁素体界面迁移与元素配分的研究进展[J]. 金属学报, 2018, 54(2): 217-227.
Hao CHEN,
Congyu ZHANG,
Jianing ZHU,
Zenan YANG,
Ran DING,
Chi ZHANG,
Zhigang YANG.
Austenite/Ferrite Interface Migration and Alloying Elements Partitioning: An Overview[J]. Acta Metall Sin, 2018, 54(2): 217-227.
[1] | Christian J W.The theory of transformations in metals and alloys [M]. Oxford: Pergamon Press, 1975: 1 | [2] | Offerman S E, Van Dijk N H, Sietsma J, et al. Grain nucleation and growth during phase transformations[J]. Science, 2002, 298: 1003 | [3] | Van Dijk N H, Offerman S E, Sietsma J, et al. Barrier-free heterogeneous grain nucleation in polycrystalline materials: The austenite to ferrite phase transformation in steel[J]. Acta Mater., 2007, 55: 4489 | [4] | Liu F, Sommer F, Bos C, et al.Analysis of solid state phase transformation kinetics: Models and recipes[J]. Int. Mater. Rev., 2007, 52: 193 | [5] | Purdy G, ?gren J, Borgenstam A, et al.ALEMI: A ten-year history of discussions of alloying-element interactions with migrating interfaces[J]. Metall. Mater. Trans., 2011, 42A: 3703 | [6] | Gouné M, Danoix F, ?gren J, et al.Overview of the current issues in austenite to ferrite transformation and the role of migrating interfaces therein for low alloyed steels[J]. Mater. Sci. Eng., 2015, R92: 1 | [7] | Chen H, Van Der Zwaag S. An overview of the cyclic partial austenite-ferrite transformation concept and its potential[J]. Metall. Mater. Trans., 2017, 48A: 2720 | [8] | Zener C.Theory of growth of spherical precipitates from solid solution[J]. J. Appl. Phys., 1949, 20: 950 | [9] | Krielaart G P, Sietsma J, Van Der Zwaag S. Ferrite formation in Fe-C alloys during austenite decomposition under non-equilibrium interface conditions[J]. Mater. Sci. Eng., 1997, A237: 216 | [10] | Liu Y C, Sommer F, Mittemeijer E J.Phase Transformations in Steels[M]. Vol.2, Amsterdam: Elsevier, 2012: 311 | [11] | Kempen A T W, Sommer F, Mittemeijer E J. The kinetics of the austenite-ferrite phase transformation of Fe-Mn: Differential thermal analysis during cooling[J]. Acta Mater., 2002, 50: 3545 | [12] | Liu Y C, Sommer F, Mittemeijer E J.Kinetics of the abnormal austenite-ferrite transformation behaviour in substitutional Fe-based alloys[J]. Acta Mater., 2004, 52: 2549 | [13] | Hultgren A.Isothermal transformation of austenite[J]. Trans. Am. Soc. Met., 1947, 39: 915 | [14] | Hillert M.Introduction to paraequilibrium [R]. Internal Report, Swedish Institute of Metals Research, Stockholm, 1953 | [15] | Bhadeshia H K D H. Some difficulties in the theory of diffusion-controlled growth in substitutionally alloyed steels[J]. Curr. Opin. Solid State Mater. Sci., 2016, 20: 396 | [16] | Hillert M, ?gren J.On the definitions of paraequilibrium and orthoequilibrium[J]. Scr. Mater., 2004, 50: 697 | [17] | Speer J G, Matlock D K, DeCooman B C, et al. Comments on “On the definitions of paraequilibrium and orthoequilibrium” by M. Hillert and J. ?gren, Scripta Materialia, 50, 697-9 (2004)[J]. Scr. Mater., 2005, 52: 83 | [18] | Hillert M, ?gren J.Reply to comments on "On the definition of paraequilibrium and orthoequilibrium"[J]. Scr. Mater., 2005, 52: 87 | [19] | Kirkaldy J.Diffusion in multicomponent metallic systems: I. Phenomenological theory for substitutional solid solution alloys[J]. Can. J. Phys., 1958, 36: 899 | [20] | Kirkaldy J S.Diffusion in multicomponent metallic systems: II. Solutions for two-phase systems with applications to transformations in steel[J]. Can. J. Phys., 1958, 36: 907 | [21] | Kirkaldy J S.Diffusion in multicomponent metallic systems: III. The motion of planar phase interfaces[J]. Can. J. Phys., 1958, 36: 917 | [22] | Kirkaldy J.Diffusion in multicomponent metallic systems: IV. A general theorem for construction of multicomponent solutions from solutions of the binary diffusion equation[J]. Can. J. Phys., 1959, 37: 30 | [23] | Coates D E.Diffusion-controlled precipitate growth in ternary systems I[J]. Metall. Trans., 1972, 3: 1203 | [24] | Coates D E.Diffusional growth limitation and hardenability[J]. Metall. Trans., 1973, 4: 2313 | [25] | Coates D E.Diffusion controlled precipitate growth in ternary systems: II[J]. Metall. Trans., 1973, 4: 1077 | [26] | Coates D E.Precipitate growth kinetics for Fe-C-X alloys[J]. Metall. Mater. Trans., 1973, 4B: 395 | [27] | Zhang C Y, Yang Z G, Enomoto M, et al.Prediction of Ar3 during very slow cooling in low alloy steels[J]. ISIJ Int., 2016, 56: 678 | [28] | Van Der Ven A, Delaey L. Models for precipitate growth during the γ→α+γ transformation in Fe-C and Fe-C-M alloys[J]. Prog. Mater. Sci., 1996, 40: 181 | [29] | Sietsma J, Van Der Zwaag S. A concise model for mixed-mode phase transformations in the solid state[J]. Acta Mater., 2004, 52: 4143 | [30] | Liu Z Y, Yang Z G, Li Z D, et al.Simulation of ledgewise growth kinetics of proeutectiod ferrite under interfacial reaction-diffusion mixed control model[J]. Acta Metall. Sin., 2010, 46: 390(刘志远, 杨志刚, 李昭东等. 界面反应--扩散混合控制模型下先共析铁素体生长动力学的模拟[J]. 金属学报, 2010, 46: 390) | [31] | Lücke K, Detert K.A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities[J]. Acta Metall., 1957, 5: 628 | [32] | Cahn J W.The impurity-drag effect in grain boundary motion[J]. Acta Metall., 1962, 10: 789 | [33] | Lücke K, Stüwe H P.On the theory of impurity controlled grain boundary motion[J]. Acta Metall., 1971, 19: 1087 | [34] | Purdy G R, Brechet Y J M. A solute drag treatment of the effects of alloying elements on the rate of the proeutectoid ferrite transformation in steels[J]. Acta Metall., 1995, 43: 3763 | [35] | Enomoto M.Influence of solute drag on the growth of proeutectoid ferrite in Fe-C-Mn alloy[J]. Acta Mater., 1999, 47: 3533 | [36] | Hillert M, Sundman B.A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys[J]. Acta Metall., 1976, 24: 731 | [37] | Zurob H S, Panahi D, Hutchinson C R, et al.Self-consistent model for planar ferrite growth in Fe-C-X alloys[J]. Metall. Mater. Trans., 2013, 44A: 3456 | [38] | Odqvist J, Hillert M, ?gren J.Effect of alloying elements on the γ to α transformation in steel. I[J]. Acta Mater., 2002, 50: 3213 | [39] | Chen H, Van Der Zwaag S. A general mixed-mode model for the austenite-to-ferrite transformation kinetics in Fe-C-M alloys[J]. Acta Mater., 2014, 72: 1 | [40] | Chen H, Zhu K Y, Zhao L, et al.Analysis of transformation stasis during the isothermal bainitic ferrite formation in Fe-C-Mn and Fe-C-Mn-Si alloys[J]. Acta Mater., 2013, 61: 5458 | [41] | Tanaka T, Aaronson H I, Enomoto M.Growth kinetics of grain boundary allotriomorphs of proeutectoid ferrite in Fe-C-Mn-X2 alloys[J]. Metall. Mater. Trans., 1995, 26A: 561 | [42] | Aaronson H I, Reynolds W T Jr, Purdy G R. Coupled-solute drag effects on ferrite formation in Fe-C-X systems[J]. Metall. Mater. Trans., 2004, 35A: 1187 | [43] | Guo H, Enomoto M.Effects of substitutional solute accumulation at α/γ boundaries on the growth of ferrite in low carbon steels[J]. Metall. Mater. Trans., 2007, 38A: 1152 | [44] | Qiu C, Zurob H S, Hutchinson C R.The coupled solute drag effect during ferrite growth in Fe-C-Mn-Si alloys using controlled decarburization[J]. Acta Mater., 2015, 100: 333 | [45] | Zhang C Y, Chen H, Zhu K Y, et al.Effect of Mo addition on the transformation stasis phenomenon during the isothermal formation of bainitic ferrite[J]. Metall. Mater. Trans., 2016, 47A: 5670 | [46] | Rowlinson J S.Translation of J.D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density”[J]. J. Stat. Phys, 1979, 20: 197 | [47] | Van Der Waals J D. Thermodynamische Theorie der Kapillarit?t unter voraussetzung stetiger Dichte?nderung [J]. Z. Phys. Chem., 1894, 13: 657 | [48] | Boettinger W J, Warren J A, Beckermann C, et al.Phase-field simulation of solidification[J]. Annu. Rev. Mater. Res., 2002, 32: 163 | [49] | Militzer M.Computer simulation of microstructure evolution in low carbon sheet steels[J]. ISIJ Int., 2007, 47: 1 | [50] | Chen L Q.Phase-field models for microstructure evolution[J]. Annu. Rev. Mater. Res., 2002, 32: 113 | [51] | Allen S M, Cahn J W.A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J]. Acta Metall., 1979, 27: 1085 | [52] | Cahn J W.On spinodal decomposition[J]. Acta Metall., 1961, 9: 795 | [53] | Steinbach I, Pezzolla F, Nestler B, et al.A phase field concept for multiphase systems[J]. Phys: Nonlin. Phenom., 1996, 94D: 135 | [54] | Steinbach I, Pezzolla F.A generalized field method for multiphase transformations using interface fields[J]. Phys: Nonlin. Phenom., 1999, 134D: 385 | [55] | Nakajima K, Apel M, Steinbach I.The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite: A multi-phase field study[J]. Acta Mater., 2006, 54: 3665 | [56] | Militzer M, Mecozzi M G, Sietsma J, et al.Three-dimensional phase field modelling of the austenite-to-ferrite transformation[J]. Acta Mater., 2006, 54: 3961 | [57] | Steinbach I, Apel M.The influence of lattice strain on pearlite formation in Fe-C[J]. Acta Mater., 2007, 55: 4817 | [58] | Mecozzi M G, Sietsma J, Van Der Zwaag S. Phase field modelling of the interfacial condition at the moving interphase during the γ→α transformation in C-Mn steels[J]. Comput. Mater. Sci., 2005, 34: 290 | [59] | Militzer M.Phase field modeling of microstructure evolution in steels[J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 106 | [60] | Loginova I, ?gren J, Amberg G.On the formation of Widmanst?tten ferrite in binary Fe-C - Phase-field approach[J]. Acta Mater., 2004, 52: 4055 | [61] | Loginova I, Odqvist J, Amberg G, et al.The phase-field approach and solute drag modeling of the transition to massive γ→α transformation in binary Fe-C alloys[J]. Acta Mater., 2003, 51: 1327 | [62] | Zhang J, Zheng C W, Li D Z.Modeling of isothermal austenite to ferrite transformation in a Fe-C alloy by phase-field method[J]. Acta Metall. Sin., 2016, 52: 1449(张军, 郑成武, 李殿中. 相场法模拟Fe-C合金中奥氏体-铁素体等温相变过程[J]. 金属学报, 2016, 52: 1449) | [63] | Yeon D H, Cha P R, Yoon J K.A phase field study for ferrite-austenite transitions under para-equilibrium[J]. Scr. Mater., 2001, 45: 661 | [64] | Mecozzi M G, Sietsma J, Van Der Zwaag S, et al. Analysis of the γ→α transformation in a C-Mn steel by phase-field modeling[J]. Metall. Mater. Trans., 2005, 36A: 2327 | [65] | Chen H, Zhu B Q, Militzer M.Phase field modeling of cyclic austenite-ferrite transformations in Fe-C-Mn alloys[J]. Metall. Mater. Trans., 2016, 47A: 3873 | [66] | Zhu B Q, Chen H, Militzer M.Phase-field modeling of cyclic phase transformations in low-carbon steels[J]. Comput. Mater. Sci., 2015, 108: 333 | [67] | Zhang J, Chen W X, Zheng C W, et al.Phase-field modeling of austenite-to-ferrite transformation in Fe-C-Mn ternary alloys[J]. Acta Metall. Sin., 2017, 53: 760(张军, 陈文雄, 郑成武等. Fe-C-Mn三元合金中奥氏体-铁素体相变的相场模拟[J]. 金属学报, 2017, 53: 760) | [68] | Bradley J, Rigsbee J, Aaronson H I.Growth kinetics of grain boundary ferrite allotriomorphs in Fe-C alloys[J]. Metall. Trans., 1977, 8A: 323 | [69] | Krielaart G P, Van Der Zwaag S. Simulations of pro-eutectoid ferrite formation using a mixed control growth model[J]. Mater. Sci. Eng., 1998, A246: 104 | [70] | Liu Y C, Sommer F, Mittemeijer E J.The austenite-ferrite transformation of ultralow-carbon Fe-C alloy; transition from diffusion-to interface-controlled growth[J]. Acta Mater., 2006, 54: 3383 | [71] | Hamada J, Enomoto M, Fujishiro T, et al.In-situ observation of the growth of massive ferrite in very low-carbon Fe-Mn and Ni alloys[J]. Metall. Mater. Trans., 2014, 45A: 3781 | [72] | Aaronson H I, Vasudevan V K.General discussion session of the symposium on “The mechanisms of the massive transformation”[J]. Metall. Mater. Trans., 2002, 33A: 2445 | [73] | Borgenstam A, Hillert M.Massive transformation in the Fe-Ni system[J]. Acta Mater., 2000, 48: 2765 | [74] | Zhu J N, Luo H W, Yang Z G, et al.Determination of the intrinsic α/γ interface mobility during massive transformations in interstitial free Fe-X alloys[J]. Acta Mater., 2017, 133: 258 | [75] | Odqvist J.On the transition to massive growth during the γ→α transformation in Fe-Ni alloys[J]. Scr. Mater., 2005, 52: 193 | [76] | Enomoto M, White C L, Aaronson H I.Evaluation of the effects of segregation on austenite grain boundary energy in Fe-C-X alloys. Metall. Trans., 1988, 19A: 1807 | [77] | Speich G, Szirmae A, Richards M.Formation of austenite from ferrite and ferrite-carbide aggregates[J]. Trans. metall. Soc. AIME, 1969, 245: 1063 | [78] | Krielaart G P, Van Der Zwaag S. Kinetics of γ→α phase transformation in Fe-Mn alloys containing low manganese[J]. Mater. Sci. Technol., 1998, 14: 10 | [79] | Wits J J, Kop T A, Van Leeuwen Y, et al.A study on the austenite-to-ferrite phase transformation in binary substitutional iron alloys[J]. Mater. Sci. Eng., 2000, A283: 234 | [80] | Hillert M, H?glund L.Mobility of α/γ phase interfaces in Fe alloys[J]. Scr. Mater., 2006, 54: 1259 | [81] | Liu Y C, Sommer F, Mittemeijer E J.Abnormal austenite-ferrite transformation behaviour in substitutional Fe-based alloys[J]. Acta Mater., 2003, 51: 507 | [82] | Liu Y C, Sommer F, Mittemeijer E J.Abnormal austenite-ferrite transformation behaviour of pure iron[J]. Philos. Mag., 2004, 84: 1853 | [83] | Liu Z Q, Miyamoto G, Yang Z G, et al.Direct measurement of carbon enrichment during austenite to ferrite transformation in hypoeutectoid Fe-2Mn-C alloys[J]. Acta Mater., 2013, 61: 3120 | [84] | Xia Y, Miyamoto G, Yang Z G, et al.Effects of Mo on carbon enrichment during proeutectoid ferrite transformation in hypoeutectoid Fe-C-Mn alloys[J]. Metall. Mater. Trans., 2015, 46A: 2347 | [85] | Liu Z Y, Yang Z G, Li Z D, et al.PLE/NPLE transition temperature of γ→α transformation of Fe-C-X alloy under hot deformation condition[J]. Acta Metall. Sin., 2008, 44: 703(刘志远, 杨志刚, 李昭东等. 热变形条件下Fe-C-X合金钢γ→α 相变的PLE/NPLE转变温度[J]. 金属学报, 2008, 44: 703) | [86] | Kubo Y, Hamada K, Urano A.Minimum detection limit and spatial resolution of thin-sample field-emission electron probe microanalysis[J]. Ultramicroscopy, 2013, 135: 64 | [87] | Oi K, Lux C, Purdy G R.A study of the influence of Mn and Ni on the kinetics of the proeutectoid ferrite reaction in steels[J]. Acta Mater., 2000, 48: 2147 | [88] | Hutchinson C R, Fuchsmann A, Brechet Y.The diffusional formation of ferrite from austenite in Fe-C-Ni alloys[J]. Metall. Mater. Trans., 2004, 35A: 1211 | [89] | Guo H, Purdy G R, Enomoto M, et al.Kinetic transitions and substititional solute (Mn) fields associated with later stages of ferrite growth in Fe-C-Mn-Si[J]. Metall. Mater. Trans., 2006, 37A: 1721 | [90] | Zhang G H, Heo Y U, Song E J, et al.Kinetic transition during the growth of proeutectoid ferrite in Fe-C-Mn-Si quaternary steel[J]. Met. Mater. Int., 2013, 19: 153 | [91] | Capdevila C, Cornide J, Tanaka K, et al.Kinetic transition during ferrite growth in Fe-C-Mn medium carbon steel[J]. Metall. Mater. Trans., 2011, 42A: 3719 | [92] | Danoix F, Sauvage X, Huin D, et al.A direct evidence of solute interactions with a moving ferrite/austenite interface in a model Fe-C-Mn alloy[J]. Scr. Mater., 2016, 121: 61 | [93] | Van Landeghem H P, Langelier B, Gault B, et al. Investigation of solute/interphase interaction during ferrite growth[J]. Acta Mater., 2017, 124: 536 | [94] | Hutchinson C R, Fuchsmann A, Zurob H S, et al.A novel experimental approach to identifying kinetic transitions in solid state phase transformations[J]. Scr. Mater., 2004, 50: 285 | [95] | Zurob H S, Hutchinson C R, Béché A, et al.A transition from local equilibrium to paraequilibrium kinetics for ferrite growth in Fe-C-Mn: A possible role of interfacial segregation[J]. Acta Mater., 2008, 56: 2203 | [96] | Zurob H S, Hutchinson C R, Bréchet Y, et al.Kinetic transitions during non-partitioned ferrite growth in Fe-C-X alloys[J]. Acta Mater., 2009, 57: 2781 | [97] | Phillion A, Zurob H S, Hutchinson C R, et al.Studies of the influence of alloying elements on the growth of ferrite from austenite under decarburization conditions: Fe-C-Nl alloys[J]. Metall. Mater. Trans., 2004, 35A: 1237 | [98] | Hutchinson C R, Zurob H S, Bréchet Y.The growth of ferrite in Fe-C-X alloys: The role of thermodynamics, diffusion, and interfacial conditions[J]. Metall. Mater. Trans., 2006, 37A: 1711 | [99] | Béché A, Zurob H S, Hutchinson C R.Quantifying the solute drag effect of Cr on ferrite growth using controlled decarburization experiments[J]. Metall. Mater. Trans., 2007, 38A: 2950 | [100] | Qiu C, Zurob H S, Panahi D, et al.Quantifying the solute drag effect on ferrite growth in Fe-C-X alloys using controlled decarburization experiments[J]. Metall. Mater. Trans., 2013, 44A: 3472 | [101] | Chen H, Appolaire B, Van Der Zwaag S. Application of cyclic partial phase transformations for identifying kinetic transitions during solid-state phase transformations: Experiments and modeling[J]. Acta Mater., 2011, 59: 6751 | [102] | Chen H, Gamsj?ger E, Schider S, et al.In situ observation of austenite-ferrite interface migration in a lean Mn steel during cyclic partial phase transformations[J]. Acta Mater., 2013, 61: 2414 | [103] | Chen H, Kuziak R, Van Der Zwaag S. Experimental evidence of the effect of alloying additions on the stagnant stage length during cyclic partial phase transformations[J]. Metall. Mater. Trans., 2013, 44A: 5617 | [104] | Chen H, Van Der Zwaag S. Analysis of ferrite growth retardation induced by local Mn enrichment in austenite created by prior interface passages[J]. Acta Mater., 2013, 61: 1338 | [105] | Sun W W, Zurob H S, Hutchinson C R.Coupled solute drag and transformation stasis during ferrite formation in Fe-C-Mn-Mo[J]. Acta Mater., 2017, 139: 62 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|