|
|
电磁场技术在冶金领域应用的数值模拟研究进展 |
王强1( ), 何明1,2, 朱晓伟1,2, 李显亮1,3, 吴春雷1,2, 董书琳1, 刘铁1 |
1 东北大学材料电磁过程研究教育部重点实验室 沈阳 110819 2 东北大学冶金学院 沈阳 110819 3 东北大学材料科学与工程学院 沈阳 110819 |
|
Study and Development on Numerical Simulation for Application of Electromagnetic Field Technologyin Metallurgical Processes |
Qiang WANG1( ), Ming HE1,2, Xiaowei ZHU1,2, Xianliang LI1,3, Chunlei WU1,2, Shulin DONG1, Tie LIU1 |
1 Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education),Northeastern University, Shenyang 110819, China 2 School of Metallurgy, Northeastern University, Shenyang 110819, China 3 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
引用本文:
王强, 何明, 朱晓伟, 李显亮, 吴春雷, 董书琳, 刘铁. 电磁场技术在冶金领域应用的数值模拟研究进展[J]. 金属学报, 2018, 54(2): 228-246.
Qiang WANG,
Ming HE,
Xiaowei ZHU,
Xianliang LI,
Chunlei WU,
Shulin DONG,
Tie LIU.
Study and Development on Numerical Simulation for Application of Electromagnetic Field Technologyin Metallurgical Processes[J]. Acta Metall Sin, 2018, 54(2): 228-246.
[1] | Campbell J.Melting, remelting, and casting for clean steel[J]. Steel Res. Int., 2017, 88(1): 1600093 | [2] | Leont'ev L I, Grigorovich K V, Kostina M V. The development of new metallurgical materials and technologies. Part 1[J]. Steel Transl., 2016, 46: 6 | [3] | Yu H Q, Zhu M Y.Multiphase flow phenomena in a slab continuous casting mold with electromagnetic brake and argon gas injection[J]. Acta Metall. Sin., 2008, 44: 619(于海岐, 朱苗勇. 板坯连铸结晶器电磁制动和吹氩过程的多相流动现象[J]. 金属学报, 2008, 44: 619) | [4] | Li B K, He J C.Application of electromagnetic force in refining and continuous casting of molten steel—recalling of metallurgical application of magneto hydrodynamics for past ten years and its prospecting[J]. J. Mater. Metall., 2003, 2: 246(李宝宽, 赫冀成. 电磁力在钢精炼和连铸中的应用—电磁流体力学的冶金应用研究十年回顾和展望[J]. 材料与冶金学报, 2003, 2: 246) | [5] | Asai S.The state of the field and its prospects of international development [A]. Proc. Intr. Cong. Electromagnetic Processing of Materials (EPM)[C]. Centre Fran?ais de l'Electricité, Paris, 1997: 5 | [6] | Wang K, He M, Wang Q, et al.Study status and development trend of new electromagnetic metallurgical technologies[J]. Angang Technol., 2015, (4): 1(王凯, 何明, 王强等. 电磁冶金新技术的研究现状与发展趋势[J]. 鞍钢技术, 2015, (4): 1) | [7] | Wang Q, Li D J, Liu X A, et al.Effects of steel teeming in new slide gate system with electromagnetic induction[J]. J. Iron Steel Res. Int., 2015, 22: 30 | [8] | Li D W.Study on flow and temperature fields in submerged entry nozzle and mold during electromagnetic swirling flow continuous casting process of steel [D]. Shenyang: Northeastern University, 2013(李德伟. 钢的电磁旋流连铸过程中浸入式水口及结晶器内流场和温度场分析 [D]. 沈阳: 东北大学, 2013) | [9] | Wang Q, Jin B G, Cui D W, et al.Analysis on cooling effect in two-stage slitless mold for soft-contact electromagnetic continuous casting[J]. Acta Metall. Sin., 2008, 44: 112(王强, 金百刚, 崔大伟等. 无缝软接触电磁连铸结晶器的冷却效果分析[J]. 金属学报, 2008, 44: 112) | [10] | Chaboudez C, Clain S, Glardon R, et al.Numerical modeling in induction heating for axisymmetric geometries[J]. IEEE Trans. Mag., 1997, 33: 739 | [11] | Gao A, Wang Q, Li D J, et al.Efficiency and influencing factors of electromagnetic steel-teeming technology[J]. Acta Metall. Sin., 2010, 46: 634(高翱, 王强, 李德军等. 电磁引流技术的出钢效率及其影响因素[J]. 金属学报, 2010, 46: 634) | [12] | Guo D, Irons G A.Modeling of gas-liquid reactions in ladle metallurgy, part II: Numerical simulation[J]. Metall. Mater. Trans., 2000, 31B: 1457 | [13] | Bermúdez A, Mu?iz M C, Salgado P.Asymptotic approximation and numerical simulation of electromagnetic casting[J]. Metall. Mater. Trans., 2003, 34B: 83 | [14] | Zhang H L, Yang S A, Zhang H H, et al.Numerical simulation of alumina-mixing process with a multicomponent flow model coupled with electromagnetic forces in aluminum reduction cells[J]. JOM, 2014, 66: 1210 | [15] | Liu X A, Wang Q, Li D J, et al.Coil design in electromagnetic induction-controlled automated steel-teeming system and its effects on system reliability[J]. ISIJ Int., 2014, 54: 482 | [16] | Li D W, Su Z J, Chen J, et al.Simulation on effect of divergent angle of submerged entry nozzle on flow and temperature field in round billet mold in electromagnetic swirling continuous casting process[J]. J. Iron Steel Res. Int., 2014, 21: 159 | [17] | Kranjc M, Zupanic A, Miklavcic D, et al.Numerical analysis and thermographic investigation of induction heating[J]. Int. J. Heat Mass Transfer, 2010, 53: 3585 | [18] | Lucía O, Maussion P, Dede E J, et al.Induction heating technology and its applications: Past developments, current technology, and future challenges[J]. IEEE Ind. Electron., 2014, 61: 2509 | [19] | Huang M S, Huang Y L.Effect of multi-layered induction coils on efficiency and uniformity of surface heating[J]. Int. J. Heat Mass Transfer, 2010, 53: 2414 | [20] | Tanaka H, Nishihara R, Kitagawa I, et al.Quantitative analysis of contamination of molten steel in tundish[J]. ISIJ Int., 1993, 33: 1238 | [21] | Suito H, Inoue R.Thermodynamics on control of inclusions composition in ultra-clean steels[J]. ISIJ Int., 1996, 36: 528 | [22] | He J C, Marukawa K, Wang Q.A new ladle with induction heating steel teeming device and new steel teeming method [P]. Chin Pat, 10045875.9, 2006(赫冀成, 丸川熊净, 王强. 一种带有加热出钢装置的钢包及其出钢方法 [P]. 中国专利, 10045875.9, 2006) | [23] | Gao A, Wang Q, Wang C J, K. et al.A new steel teeming method and device to improve steel cleanliness [P]. Chin Pat, 10011159.2, 2009(高翱, 王强, 王长久等. 一种提高钢水洁净度的引流方法及其装置 [P]. 中国专利, 10011159.2, 2009) | [24] | Wang Q, Li D J, Liu X A, et al.An installation method of a new steel teeming device in ladle using electromagnetic induction [P]. Chin Pat, 10220532.2, 2011(王强, 李德军, 刘兴安等. 一种钢包电磁感应加热出钢装置及其安装方法 [P]. 中国专利, 10220532.2, 2011) | [25] | Gao A, Wang Q, Li D J, et al.State of Fe-C alloy in the electromagnetic steel-teeming system[J]. Acta Metall. Sin., 2011, 47: 219(高翱, 王强, 李德军等. 电磁出钢系统中Fe-C合金的状态研究[J]. 金属学报, 2011, 47: 219) | [26] | He M, Wang Q, Liu X A, et al.Analysis of power supply heating effect during high temperature experiments based on the electromagnetic steel teeming technology[J]. High Temp. Mater. Pro., 2017, 36: 441 | [27] | Gao A, Li D J, Wang Q, et al.Analysis of an automatic steel-teeming method using electromagnetic induction heating in slide gate system[J]. ISIJ Int., 2009, 50: 1770 | [28] | Liu X A, Wang Q, Shi C Y, et al.Power supply design in electromagnetic induction controlled automatic steel-teeming system and its effects on system reliability[J]. J. Cent. South Univ.(Sci. Technol.), 2015, 46: 3188(刘兴安, 王强, 史纯阳等. 电磁出钢系统中感应加热电源设计及其对系统可靠性的影响[J]. 中南大学学报(自然科学版), 2015, 46: 3188) | [29] | Sahai Y.Tundish technology for casting clean steel: A review[J]. Metall. Mater. Trans., 2016, 47B: 2095 | [30] | Dai C M, Lei H, Bi Q, et al.Mathematical simulation for tundish with the channel type induction heating[J]. Steelmaking, 2015, 31(4): 54(代传民, 雷洪, 毕乾等. 通道式感应加热中间包的数值模拟[J]. 炼钢, 2015, 31(4): 54) | [31] | Cong L, Zhang J M, Lei S W, et al.Numerical simulation on tundish induction heating[J]. Res. Iron Steel, 2014, 42(3): 20(丛林, 张炯明, 雷少武等. 中间包感应加热的数值模拟[J]. 钢铁研究, 2014, 42(3): 20) | [32] | Yue Q, Zhang C B, Pei X H.Magnetohydrodynamic flows and heat transfer in a twin-channel induction heating tundish[J]. Ironmak. Steelmak., 2017, 44: 227 | [33] | Wang Q, Li B K, Tsukihashi F.Modeling of a thermo-electromagneto-hydrodynamic problem in continuous casting tundish with channel type induction heating[J]. ISIJ Int., 2014, 54: 311 | [34] | Miki Y, Kitaoka H, Sakuraya T, et al.Mechanism for separating inclusions from molten steel stirred with a rotating electro-magnetic field[J]. Trans. ISIJ, 1992, 32: 142 | [35] | Miki Y, Kitaoka H, Bessho N, et al.Inclusion separation from molten steel in tundish with rotating electromagnetic field[J]. Tetsu Hagané, 1996, 82: 498(三木祐司, 北岡英就, 別所永康等, 遠心分離タンディッシュによる溶鋼中介在物の分離[J], 鉄と鋼, 1996, 82: 498) | [36] | Wang Y, Zhong Y B, Ren Z M, et al.Numerical simulation of molten steel flow in centrifugal flow tundish[J]. Acta Metall. Sin., 2008, 44: 1203(王赟, 钟云波, 任忠鸣等. 离心中间包内钢液流动的数值模拟[J]. 金属学报, 2008, 44: 1203) | [37] | Zhao L R, Wang Y, Zhong Y B, et al.Numerical simulation of flow pattern in the tundish for electromagnetic purification[J]. Shanghai Met., 2008, 30(6): 46(赵利荣, 王赟, 钟云波等. 电磁净化中间包内流场的数值模拟[J]. 上海金属, 2008, 30(6): 46) | [38] | Huang A, Wang H Z, Gu H Z, et al.Research on mathematical simulation of inclusion removal and mechanism effect for gas curtain tundish[J]. J. Iron Steel Res. Int., 2008, 5: 478 | [39] | Huang A, Chao J I, Gu H Z, et al.Numerical simulation of inclusion removal in tundish with babbling curtain and electromagnetic field[J]. J. Iron Steel Res. Int., 2012, 19(S1): 162 | [40] | Xu T, Zhang L H, Li X Q, et al.Numerical simulation of fluid-thermal coupling field of tundish in static magnetic field[J]. Spec. Cast. Nonferrous Alloys, 2015, 35: 365(徐婷, 张立华, 李晓谦等. 稳恒磁场下中间包温度场流场耦合数值模拟[J]. 特种铸造及有色冶金, 2015, 35: 365) | [41] | Tripathi A.Mathematical modelling of flow control in a tundish using electro-magnetic forces[J]. Appl. Math. Model., 2011, 35: 5075 | [42] | Tripathi A.Numerical investigation of electro-magnetic flow control phenomenon in a tundish[J]. ISIJ Int., 2012, 52: 447 | [43] | Liu H P, Xu M G, Qiu S T, et al.Numerical simulation of fluid flow in a round bloom mold with in-mold rotary electromagnetic stirring[J]. Metall. Mater. Trans., 2012, 43B: 1657 | [44] | Okazawa K, Toh T, Fukuda J, et al.Fluid flow in a continuous casting mold driven by linear induction motors[J]. ISIJ Int., 2001, 41: 851 | [45] | Toh T, Hasegawa H, Harada H.Evaluation of multiphase phenomena in mold pool under in-mold electromagnetic stirring in steel continuous casting[J]. ISIJ Int., 2001, 41: 1245 | [46] | Beitelman L.Effect of mold EMS design on billet casting productivity and product quality[J]. Can. Metall. Quart., 1999, 38: 301 | [47] | Fujisaki K.In-mold electromagnetic stirring in continuous casting[J]. IEEE Trans. Ind. Appl., 2001, 37: 1098 | [48] | Liu Y, Wang X H.Effect of electromagnetic stirring at secondary cooling area on central segregation of a continuously cast slab[J]. J. Univ. Sci. Technol. Beijing, 2007, 29: 586(刘洋, 王新华. 二冷区电磁搅拌对连铸板坯中心偏析的影响[J]. 北京科技大学学报, 2007, 29: 586) | [49] | Wang X D, Wang B F, Cao J G, et al.Determination of F-EMS position and process parameters in bloom continuous caster[J]. Iron Steel, 2011, 46(8): 40(王晓东, 王宝峰, 曹建刚等. 大方坯末端电磁搅拌位置和连铸工艺参数的确定[J]. 钢铁, 2011, 46(8): 40) | [50] | Spitzer K H, Dubke M, Schwerdtfeger K.Rotational electromagnetic stirring in continuous casting of round strands[J]. Metall. Mater. Trans., 1986, 17B: 119 | [51] | Natarajan T T, El-Kaddah N.Finite element analysis of electromagnetically driven flow in sub-mold stirring of steel billets and slabs[J]. ISIJ Int., 1998, 38: 680 | [52] | Ren B Z, Chen D F, Wang H D, et al.Numerical analysis of coupled turbulent flow and macroscopic solidification in a round bloom continuous casting mold with electromagnetic stirring[J]. Steel Res. Int., 2015, 86: 1104 | [53] | Yu H Q, Zhu M Y.Three-dimensional magnetohydrodynamic calculation for coupling multiphase flow in round billet continuous casting mold with electromagnetic stirring[J]. IEEE Trans. Mag., 2010, 46: 82 | [54] | Tsukaguchi Y, Hayashi H, Kurimoto H, et al.Development of swirling-flow submerged entry nozzles for slab casting[J]. ISIJ Int., 2010, 50: 721 | [55] | Yokoya S, Asako Y, Hara S, et al.Control of immersion nozzle outlet flow pattern through the use of swirling flow in continuous casting[J]. ISIJ Int., 1994, 34: 883 | [56] | Yokoya S, Takagi S, Iguchi M, et al.Swirling effect in immersion nozzle on flow and heat transport in billet continuous casting mold[J]. ISIJ Int., 1998, 38: 827 | [57] | Yokoya S, Takagi S, Iguchi M, et al.Swirling flow effect in immersion nozzle on flow in slab continuous casting mold[J]. ISIJ Int., 2000, 40: 578 | [58] | Yokoya S, Takagi S, Kaneko M, et al.Swirling flow effect in off-center immersion nozzle on bulk flow in billet continuous casting mold[J]. ISIJ Int., 2001, 41: 1215 | [59] | Tsukaguchi Y, Hayashi H, Yokoya S, et al.Swirling flow submerged entry nozzle for round billet casting[J]. Tetsu Hagané, 2007, 93: 575(塚口友一, 林浩史, 横谷真一郎等, 丸ビレット連続鋳造用旋回流浸漬ノズル[J]. 鉄と鋼, 2007, 93: 575) | [60] | He J C, Marukawa K, Su Z J.Electromagnetic swirling technology in the submerged entry nozzle [P]. Chin Pat, 10047290.6, 2005(赫冀成, 丸川雄净, 苏志坚. 电磁旋流水口 [P]. 中国专利: 10047290.6, 2005) | [61] | Li D W, Su Z J, Chen J, et al.Numerical simulation of swirling flow in divergent submerged entry nozzle in round billet continuous casting of steel[J]. Acta Metall. Sin., 2013, 49: 871(李德伟, 苏志坚, 陈进等. 钢圆坯连铸过程中渐开式电磁旋流水口数值模拟[J]. 金属学报, 2013, 49: 871) | [62] | Su Z J, Li D W, Sun L W, et al.Numerical simulation of swirling flow in immersion nozzle induced by a rotating electromagnetic field in round billet[J]. Acta Metall. Sin., 2010, 46: 479(苏志坚, 李德伟, 孙立为等. 圆坯连铸电磁旋流水口的数值模拟[J]. 金属学报, 2010, 46: 479) | [63] | Ni S Q, Peng S H, Qiu S T, et al.Development of electromagnetic brake technique and application in slab continuous casting mold[J]. Continu. Cast., 2009, (1): 40(倪升起, 彭世恒, 仇圣桃等. 电磁制动技术的发展及在板坯连铸结晶器中的应用[J]. 连铸, 2009, (1): 40) | [64] | Ha M Y, Lee H G, Seong S H.Numerical simulation of three-dimensional flow, heat transfer, and solidification of steel in continuous casting mold with electromagnetic brake[J]. J. Mater. Process. Technol., 2003, 133: 322 | [65] | Li B, Tsukihashi F.Effects of electromagnetic brake on vortex flows in thin slab continuous casting mold[J]. ISIJ Int., 2006, 46: 1833 | [66] | Wang Y F, Zhang L F.Fluid flow-related transport phenomena in steel slab continuous casting strands under electromagnetic brake[J]. Metall. Mater. Trans., 2011, 42B: 1319 | [67] | Cukierski K, Thomas B G.Flow control with local electromagnetic braking in continuous casting of steel slabs[J]. Metall. Mater. Trans., 2008, 39B: 94 | [68] | Chaudhary R, Thomas B G, Vanka S P.Effect of electromagnetic ruler braking (EMBR) on transient turbulent flow in continuous slab casting using large eddy simulations[J]. Metall. Mater. Trans., 2012, 43B: 532 | [69] | Zhou H Q, Zhang Y Z, Gao S P.The application of electromagnetic casting technology to continuous casting[J]. Shanghai Met., 2000, 22(1): 3(周焕勤, 张译中, 高少平. 用于连铸的电磁铸造技术[J]. 上海金属, 2000, 22(1): 3) | [70] | Jin B G, Wang Q, Cui D W, et al.Numerical simulation of cooling effect in slit mold for soft contact electromagnetic continuous casting[J]. Foundry Technol., 2007, 28: 1468(金百刚, 王强, 崔大伟等. 切缝式软接触电磁连铸结晶器的冷却效果分析[J]. 铸造技术, 2007, 28: 1468) | [71] | Jin B G, Wang Q, Cui D W, et al.Numerical simulation of electromagnetism parameters and structure parameters in two-stage slit-less mold[J]. Acta Metall. Sin., 2007, 43: 427(金百刚, 王强, 崔大伟等. 两段式无缝软接触结晶器电磁参数和结构参数的研究[J]. 金属学报, 2007, 43: 427) | [72] | Jin B G, Wang Q, Liu Y, et al.Electromagnetic field distribution in two-stage slitless mold for soft contact electromagnetic continuous casting mold[J]. Acta Metall. Sin., 2007, 43: 999(金百刚, 王强, 刘岩等. 两段式无缝软接触电磁连铸结晶器内的电磁场分布[J]. 金属学报, 2007, 43: 999) | [73] | Jin B G, Wang Q, Gao A, et al.Electromagnetic field distribution in two-section slitless mold for soft-contact electromagnetic continuous casting[J]. ISIJ Int., 2009, 49: 44 | [74] | Thess A, Kolesnikov Y, Karcher C.Lorentz force velocimetry—A contactless technique for flow measurement in high-temperature melts [A]. Proceedings of 5th International Symposium on Electromagnetic Processing of Materials[C]. Sendai: The Iron and Steel Institute of Japan, 2006: 731 | [75] | Hou J B, Liu Y.Retrospect and development of electromagnetic pump casting technology[J]. Cast. Forg. Weld., 2010, 39(17): 64(侯击波, 刘云. 电磁泵铸造技术的回顾及发展[J]. 金属铸锻焊技术, 2010, 39(17): 64) | [76] | Li H X, Wang Q, Lei H, et al.Mechanism analysis of free-surface vortex formation during steel teeming[J]. ISIJ Int., 2014, 54: 1592 | [77] | Li H X, Wang Q, Jiang J W, et al.Analysis of factors affecting free surface vortex formation during steel teeming[J]. ISIJ Int., 2016, 56: 94 | [78] | Kubota J, Kubo N, Ishii T, et al.Steel flow control in continuous slab caster mold by traveling magnetic field[J]. NKK Tech. Rev., 2001, 85: 1 | [79] | Kubota J, Kubo N, Suzuki M, et al.Steel flow control with travelling magnetic field for slab continuous castermold[J]. Tetsu Hagané, 2000, 86: 271(久保田淳, 久保典子, 鈴木真等. 移動磁場によるスラブ連鋳機の鋳型内溶鋼流動制御[J]. 鉄と鋼, 2000, 86: 271) | [80] | Wang H L, Yan X, Lei Z S, et al.Study on side containment technology of twin-roll thin strip continuous casting[J]. Steelmaking, 2007, 23: 54(王贺利, 闫欣, 雷作盛等. 双辊薄带钢连铸侧封技术研究[J]. 炼钢, 2007, 23: 54) | [81] | Xu Q T, Li J D, Sun Z Q.Application of dendrite corrosion macroscopic examination on the continuous casting[J]. Phys. Exam. Test., 2011, 29(6): 22(许庆太, 李吉东, 孙中强. 枝晶腐蚀低倍检验在连铸生产中的应用[J]. 物理测试, 2011, 29(6): 22) | [82] | Tzavaras A A, Brody H D.Electromagnetic stirring and continuous casting—Achievements, problems, and goals[J]. JOM, 1984, 36(3): 31 | [83] | Yamazaki M, Natsume Y, Harada H, et al.Numerical simulation of solidification structure formation during continuous casting in Fe-0.7mass%C alloy using cellular automaton method[J]. ISIJ Int., 2006, 46: 903 | [84] | Geng M S, Han Q L.Simulation of solidification microstructure of continuous casting billet under electromagnetic stirring[J]. Contin. Cast., 2013, (6): 43(耿明山, 韩庆礼. 电磁搅拌下连铸方坯凝固组织模拟[J]. 连铸, 2013, (6): 43) | [85] | Luo S, Piao F Y, Jiang D B, et al.Numerical simulation and experimental study of F-EMS for continuously cast billet of high carbon steel[J]. J. Iron Steel Res. Int., 2014, 21(S1): 51 | [86] | Zhang C X, Zhang Z F, Xu J.Numerical simulation on solidification structure of aluminum alloy under electromagnetic stirring[J]. Foundry Technol., 2012, 33: 280(张衬新, 张志峰, 徐骏. 电磁搅拌作用下铝合金凝固组织的数值模拟[J]. 铸造技术, 2012, 33: 280) | [87] | Liu C G, Qiu X W.The latest development of laser melting technology[J]. Nonferrous Met. Process., 2011, 40(6): 21(刘春阁, 邱星武. 激光熔凝技术的发展现状[J]. 有色金属加工, 2011, 40(6): 21) | [88] | Yang G, Zhao E D, Qin L Y, et al.Effect of electromagnetic stirring on melt pool solidification of laser melting TA15 titanium alloy[J]. Rare Met. Mater. Eng., 2017, 46: 966(杨光, 赵恩迪, 钦兰云等. 电磁搅拌对激光熔凝TA15钛合金熔池凝固研究 [J]. 稀有金属材料与工程, 2017, 46: 966) | [89] | Yang Y S, Fu J W, Luo T J, et al.Grain refinement of magnesium alloys under low-voltage pulsed magnetic field[J]. Chin. J. Nonferrous Met., 2011, 21: 2639(杨院生, 付俊伟, 罗天骄等. 镁合金低压脉冲磁场晶粒细化[J]. 中国有色金属学报, 2011, 21: 2639) | [90] | Teng Y F, Li Y J, Feng X H, et al.Effect of rectangle aspect ratio on grain refinement of super alloy K4169 under pulsed magnetic field[J]. Acta Metall. Sin., 2015, 51: 844(滕跃飞, 李应举, 冯小辉等. 脉冲磁场作用下矩形截面宽厚比对K4169高温合金晶粒细化的影响[J]. 金属学报, 2015, 51: 844) | [91] | Zhang Y H, Zhong H G, Zhai Q J.Research progress of grain refinement and homogenization of solidified metal alloys driven by pulsed electromagnetic fields[J]. J. Iron Steel Res., 2017, 29: 249(张云虎, 仲红刚, 翟启杰. 脉冲电磁场凝固组织细化和均质化技术研究与应用进展[J]. 钢铁研究学报, 2017, 29: 249) | [92] | Zhai Q J, Gong Y Y, Li R X.Solidification process and grain refinement technology[J]. J. Mater. Metall., 2015, 14: 81(翟启杰, 龚永勇, 李仁兴. 金属凝固过程与细晶技术[J]. 材料与冶金学报, 2015, 14: 81) | [93] | Liu T Y, Sun J, Sheng C, et al.Influence of pulse magneto-oscillation on the efficiency of grain refiner[J]. Adv. Manuf., 2017, 5: 143 | [94] | Zhang W Q, Yang Y S, Liu Q M, et al.Structural transition and macrosegregation of Al-Cu eutectic alloy solidified in the electromagnetic centrifugal casting process[J]. Metall. Mater. Trans., 1998, 29A: 404 | [95] | Zhang T, Wang Q, Song X, et al.Effect of electromagnetic centrifugal casting on solidification microstructure of cast high speed steel roll[J]. Materialwiss. Werkstofftech., 2011, 42: 557 | [96] | He Y L, Yang Y S, Yu L, et al.Numerical simulation on the macrostructures of electromagnetic centrifugal casting[J]. Acta Metall. Sin., 2000, 36: 874(贺幼良, 杨院生, 于力等. 电磁离心铸件宏观组织的数值模拟[J]. 金属学报, 2000, 36: 874) | [97] | He Y L, Yang Y S, Hu Z Q.Finite element simulation of the melt flow and heat transfer in electromagnetic centrifugal casting[J]. Foundry, 2000, 49: 473(贺幼良, 杨院生, 胡壮麒. 电磁离心凝固过程熔体流动和传热的有限元数值模拟[J]. 铸造, 2000, 49: 473) | [98] | Guo D Y, Yang Y S, Tong W H, et al.Numerical simulation of macrosegregation during electromagnetic centrifugal solidification[J]. Acta Metall. Sin., 2004, 40: 275(郭大勇, 杨院生, 童文辉等. 电磁离心凝固过程中宏观偏析的数值模拟[J]. 金属学报, 2004, 40: 275) | [99] | Guo D Y, Yang Y S, Tong W H, et al.Simulation of electromagnetic force driven melt flow and fracture of dendrites[J]. Acta Metall. Sin., 2003, 39: 914(郭大勇, 杨院生, 童文辉等. 电磁驱动熔体流动与枝晶变形断裂模拟[J]. 金属学报, 2003, 39: 914) | [100] | Durand F.The electromagnetic cold crucible as a tool for melt preparation and continuous casting[J]. Int. J. Cast Met. Res., 2005, 18: 93 | [101] | Morisue T, Yajima T, Kume T, et al.Analysis of electromagnetic force for shaping the free surface of a molten metal in a cold crucible[J]. IEEE Trans. Mag., 2002, 29: 1562 | [102] | Jiang B Y.The development and applications of cold crucible induction melting of rcactive alloys[J]. Rare Met. Mater. Eng., 1993, 22(2): 1(蒋炳玉. 冷坩埚感应熔炼活性金属的发展与应用[J]. 稀有金属材料与工程, 1993, 22(2): 1) | [103] | Chen R R, Guo J J, Ding H S, et al.Research and development of cold crucible melting and casting technology[J]. Foundry, 2007, 56: 443(陈瑞润, 郭景杰, 丁宏升等. 冷坩埚熔铸技术的研究及开发现状[J]. 铸造, 2007, 56: 443) | [104] | Deng K, Ren Z M, Chen J Q, et al.The electromagnetic levitation in melting process with cold crucible[J]. Acta Metall. Sin., 1999, 35: 739(邓康, 任忠鸣, 陈坚强等. 水冷坩埚熔炼的电磁悬浮特性[J]. 金属学报, 1999, 35: 739) | [105] | Yang J R, Chen R R, Ding H S, et al.Heat transfer and macrostructure formation of Nb containing TiAl alloy directionally solidified by square cold crucible[J]. Intermetallics, 2013, 42: 184 | [106] | Yang J R, Chen R R, Ding H S, et al.Flow field and its effect on microstructure in cold crucible directional solidificaiton of Nb containing TiAl alloy[J]. J. Mater. Process. Technol., 2014, 214: 735 | [107] | Yang J R, Chen R R, Guo J J, et al.Temperature distribution in bottomless electromagnetic cold crucible applied to directional solidification[J]. Int. J. Heat Mass Transfer, 2016, 100: 131 | [108] | Chen R R, Ding H S, Bi W S, et al.Distribution of electromagnetic field in cold crucible for electromagnetic confinement[J]. Spec. Cast. Nonferrous Alloys, 2006, 26: 615(陈瑞润, 丁宏升, 毕维生等. 电磁约束成形用冷坩埚内磁场分布规律[J]. 特种铸造及有色合金, 2006, 26: 615) | [109] | Ding H S, Chen R R, Guo J J, et al.Directional solidificaiton of titanium alloys by electromagnetic confinement in cold crucible[J]. Mater. Lett., 2005, 59: 741 | [110] | Chen R R, Ding H S, Guo J J, et al.Temperature field calculation on cold crucible continuous melting and directional solidification of Ti6Al4V alloy[J]. Rare Met. Mater. Eng., 2007, 36: 1722(陈瑞润, 丁宏升, 郭景杰等. 冷坩埚连续熔铸与定向凝固Ti6Al4V合金的温度场计算[J]. 稀有金属材料与工程, 2007, 36: 1722) | [111] | Chen R R, Yang J R, Ding H S, et al.Magnetic field in a near-rectangular cold crucible designed for continuously melting and directionally solidifying TiAl alloys[J]. J. Mater. Process. Technol., 2012, 212: 1934 | [112] | Yang J R, Chen R R, Ding H S, et al.Mechanism and evolution of heat transfer in mushy zone during cold crucible directionally solidifying TiAl alloys[J]. Int. J. Heat Mass Transfer, 2013, 63: 216 | [113] | Yan Y C, Ding H S, Kang Y W, et al.Microstructure evolution and mechanical properties of Nb-Si based alloy processed by electromagnetic cold crucible directional solidification[J]. Mater. Des., 2014, 55: 450 | [114] | Chen R R, Huang F, Guo J J, et al.Effect of parameters on the grain growth of silicon ingots prepared by electromagnetic cold crucible continuous casting[J]. J. Cryst. Growth, 2011, 332: 68 | [115] | Sun D L, Chen H C, Song Y Y.Cold crucible technique and its application to crystal growth[J]. J. Synth. Cryst., 1990, 19: 172(孙大亮, 陈焕矗, 宋永远. 冷舟冷坩埚技术及其在单晶体生长中的应用[J]. 人工晶体学报, 1990, 19: 172) | [116] | Chen R R, Ding H S, Bi W S, et al.Electromagnetic cold crucible technology and its application[J]. Rare Met. Mater. Eng., 2005, 34: 510(陈瑞润, 丁宏升, 毕维生等. 电磁冷坩埚技术及其应用[J]. 稀有金属材料与工程, 2005, 34: 510) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|