Please wait a minute...
金属学报  2018, Vol. 54 Issue (10): 1387-1398    DOI: 10.11900/0412.1961.2018.00100
  本期目录 | 过刊浏览 |
奥氏体/铁素体层状条带结构高锰钢的微观组织及其性能
朱恺, 伍翠兰(), 谢盼, 韩梅, 刘元瑞, 张香阁, 陈江华
湖南大学材料科学与工程学院 长沙 410082
Microstructure and Mechanical Properties of an Austenite/Ferrite Laminate Structured High-Manganese Steel
Kai ZHU, Cuilan WU(), Pan XIE, Mei HAN, Yuanrui LIU, Xiangge ZHANG, Jianghua CHEN
College of Materials Science and Engineering, Hunan University, Changsha 410082, China
引用本文:

朱恺, 伍翠兰, 谢盼, 韩梅, 刘元瑞, 张香阁, 陈江华. 奥氏体/铁素体层状条带结构高锰钢的微观组织及其性能[J]. 金属学报, 2018, 54(10): 1387-1398.
Kai ZHU, Cuilan WU, Pan XIE, Mei HAN, Yuanrui LIU, Xiangge ZHANG, Jianghua CHEN. Microstructure and Mechanical Properties of an Austenite/Ferrite Laminate Structured High-Manganese Steel[J]. Acta Metall Sin, 2018, 54(10): 1387-1398.

全文: PDF(13511 KB)   HTML
摘要: 

采用XRD、SEM、TEM、EBSD、EPMA等表征手段及硬度测试和拉伸实验研究了Mn12Ni2MoTi(Al)钢经过形变热处理后的微观组织及其性能。结果表明,Mn12Ni2MoTi(Al)钢经过65%冷轧及745 ℃两相区退火处理后,其横截面形成了由奥氏体层和铁素体层交替排列的层状条带组织,每个条带均由晶体取向相近的亚微米等轴晶组成;奥氏体条带中含有少量的铁素体晶粒,同样铁素体条带中含有少量的奥氏体晶粒。这种奥氏体/铁素体层状条带结构中的奥氏体晶粒具有黄铜型{110}<112>和Goss型{110}<001>织构,铁素体晶粒主要为旋转立方型{001}<110>和立方型{001}<100>织构。随着退火时间的延长,层状条带特征先增强然后逐渐减弱直至消失,同时奥氏体织构由黄铜型织构逐渐向Goss型织构演化。当材料具有层状条带组织时,同时具有高屈服强度和良好延伸率;当层状条带组织消失时,其屈服强度大幅度下降的同时延伸率也下降。

关键词 层状结构高锰钢形变热处理TRIP效应    
Abstract

Lamianate structured metals have recently attracted extensive interests for their outstanding mechanical properties which are produced by synergetic strengthening of different heterogeneous layers. For Mn-rich maraging steels, austenite can precipitate in the martensite matrix due to Mn segregation during heat treatment, and then the austenite and martensite/ferrite duplex steel is produced. Besides, high Mn TRIP steel is regarded as a promising material for next generation automobile steel because of its high strength and good ductility. In this work, the microstructures and properties of Mn12Ni2MoTi(Al) steels produced by thermo-mechanical process were investigated using XRD, SEM, TEM, EBSD, EPMA, hardness tests and tensile tests. The results showed that laminate structures with austenite/ferrite band alternate arranging along the normal direction were formed in Mn12Ni2MoTi(Al) steels, which were processed by 65% cold-rolling and subsequent annealing at 745 ℃. Both of austenite bands and ferrite bands consist of ultrafine equiaxed grains. Moreover, a small amount of ferrite grains and austenite grains were found inside the austenite bands and ferrite bands, respectively. In the austenite/ferrite laminate structures, the austenite bands show the Brass texture of {110}<112> and Goss- type texture of {110}<001>. The ferrite bands show the rotate Cube texture of {001} <110> and Cube texture of {001}<100>. With the increase of annealing time, the laminate structures first become dominant and then disappear gradually, accompanying with the orientation transition of austenite from the Brass texture into the Goss one. The samples with laminate structures have high yield strength and good ductility. Otherwise, when the laminate structures disappear, the yield strength and ductility of the samples will decrease, and the yield strength deceases more.

Key wordslaminate structure    high manganese steel    thermomechanical process    TRIP effect
收稿日期: 2018-03-19     
ZTFLH:  TG166.7  
基金资助:国家自然科学基金项目Nos.11427806和51371081
作者简介:

作者简介 朱 恺,男,1994年生,硕士生

图1  样品示意图
Texture component Symbol Miller index
Cube {001}<100>
Rotated Cube {001}<110>
Goss {110}<001>
Brass {110}<112>
E-typed {111}<110>
F-typed {111}<112>
Copper {112}<111>
Rotated Goss {110}<110>
表1  图2中符号代表的织构名称和Miller指数
图2  立方金属常见织构类型在ψ2=0°和ψ2=45°面的位置(图中符号代表的织构名称和Miller指数列于表1)[29]
图3  65%CR样品的微观组织及织构ODF图
图4  745 ℃-1 h试样不同观察方向的SEM像
图5  亮带和暗带各自的厚度和硬度在745 ℃随退火时间的变化曲线
图6  745 ℃-1 h样品的SEM和EBSD对照图
图7  745 ℃-1 h退火试样3个不同面的XRD谱
图8  745 ℃不同时间退火试样奥氏体相对体积分数
图9  在745 ℃不同时间退火后试样TD面EBSD相图及反极图
图10  经过745 ℃不同时间退火后试样中奥氏体织构演化图
图11  经过745 ℃不同时间退火后试样中铁素体织构演化图
图12  不同状态试样TD面的Mn元素分布图
图13  不同退火试样TEM像
图14  不同试样的工程应力-应变拉伸曲线
图15  745 ℃-1 h试样经过不同拉伸变形后TD面EBSD相图及反极图
图16  745 ℃-24 h试样拉断后TD面EBSD相图及其反极图
[1] Latypov M I, Shin S, De Cooman B C, et al. Micromechanical finite element analysis of strain partitioning in multiphase medium manganese TWIP+TRIP steel[J]. Acta Mater., 2016, 108: 219
[2] Frommeyer G, Brüx U, Neumann P, et al.Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes[J]. ISIJ Int., 2003, 43: 438
[3] Li K, Injeti V S Y, Misra R D K, et al. On the strain rate sensitivity of aluminum-containing transformation-induced plasticity steels: Interplay between TRIP and TWIP effects[J]. Mater. Sci. Eng., 2017, A711: 515
[4] Allain S, Chateau J P, Dahmoun D, et al. Modeling of mechanical twinning in a high manganese content austenitic steel [J]. Mater. Sci. Eng., 2004, A387-389: 272
[5] Bouaziz O, Guelton N. Modelling of TWIP effect on work-hardening [J]. Mater. Sci. Eng., 2001, A319-321: 246
[6] Wang Y M, Chen M W, Sheng H W, et al.Nanocrystalline grain structures developed in commercial purity Cu by low-temperature cold rolling[J]. J. Mater. Res., 2002, 17: 3004
[7] Huang X X, Hansen N, Tsuji N.Hardening by annealing and softening by deformation in nanostructured metals[J]. Science, 2006, 312: 249
[8] Valiev R.Nanostructuring of metals by severe plastic deformation for advanced properties[J]. Nat. Mater., 2004, 3: 511
[9] Wu X L, Yang M X, Yuan F P, et al.Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J]. Proc. Natl. Acad. Sci. U. S. A., 2015, 112: 14501
[10] Wang Y M, Ma E.Three strategies to achieve uniform tensile deformation in a nanostructured metal[J]. Acta Mater., 2004, 52: 1699
[11] Song R, Ponge D, Raabe D, et al.Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels[J]. Mater. Sci. Eng., 2006, A441: 1
[12] Rezaee A, Kermanpur A, Najafizadeh A, et al.Production of nano/ultrafine grained AISI 201L stainless steel through advanced thermo-mechanical treatment[J]. Mater. Sci. Eng., 2011, A528: 5025
[13] Forouzan F, Najafizadeh A, Kermanpur A, et al.Production of nano/submicron grained AISI 304L stainless steel through the martensite reversion process[J]. Mater. Sci. Eng., 2010, A527: 7334
[14] Dini G, Najafizadeh A, Monir-Vaghefi S M, et al. Grain size effect on the martensite formation in a high-manganese TWIP steel by the Rietveld method[J]. J. Mater. Sci. Technol., 2010, 26: 181
[15] Yin Y Q, Wu C L, Xie P, et al.An ultrafine grained duplex Mn12Ni2MoTi(Al) steel fabricated by cold rolling and annealing[J]. Acta Metall. Sin., 2016, 52: 1527(尹炎祺, 伍翠兰, 谢盼等. 冷轧及退火制备的超细晶粒双相Mn12Ni2MoTi(Al)钢[J]. 金属学报, 2016, 52: 1527)
[16] Tsuji N, Ueji R, Minamino Y, et al.A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property[J]. Scr. Mater., 2002, 46: 305
[17] Eizadjou M, Talachi A K, Manesh H D, et al.Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process[J]. Compos. Sci. Technol., 2008, 68: 2003
[18] Fang T H, Li W L, Tao N R, et al.Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J]. Science, 2011, 331: 1587
[19] Tan H F, Zhang B, Luo X M, et al.Strain rate dependent tensile plasticity of ultrafine-grained Cu/Ni laminated composites[J]. Mater. Sci. Eng., 2014, A609: 318
[20] Lee H, Min C J, Sohn S S, et al.Novel medium-Mn (austenite+martensite) duplex hot-rolled steel achieving 1.6GPa strength with 20% ductility by Mn-segregation-induced TRIP mechanism[J]. Acta Mater., 2018, 147: 247
[21] Ueji R, Tsuji N, Minamino Y, et al.Effect of rolling reduction on ultrafine grained structure and mechanical properties of low-carbon steel thermomechanically processed from martensite starting structure[J]. Sci. Technol. Adv. Mater., 2004, 5: 153
[22] Wu X L, Yang M X, Yuan F P, et al.Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility[J]. Acta Mater., 2016, 112: 337
[23] Ma X L, Huang C X, Moering J, et al.Mechanical properties of copper/bronze laminates: Role of interfaces[J]. Acta Mater., 2016, 116: 43
[24] Zhang L, Chen Z, Wang Y H, et al.Fabricating interstitial-free steel with simultaneous high strength and good ductility with homogeneous layer and almella structure[J]. Scr. Mater., 2017, 141: 111
[25] Chen H, Zhang C Y, Zhu J N, et al.Austenite/ferrite interface migration and alloying elements partitioning: An overview[J]. Acta Metall. Sin., 2018, 54: 217(陈浩, 张璁雨, 朱加宁等. 奥氏体/铁素体界面迁移与元素配分的研究进展[J]. 金属学报, 2018, 54: 217)
[26] Xie P, Han M, Wu C L, et al.A high-performance TRIP steel enhanced by ultrafine grains and hardening precipitates[J]. Mater. Des., 2017, 127: 1
[27] De Amar K, Murdock D C, Mataya M C, et al.Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction[J]. Scr. Mater., 2004, 50: 1445
[28] Chen Y, Wu C L, Xie P, et al.A phase-transformation-strengthened surface layer on Fe-20Mn-3Al-3Si steel fabricated by mechanical grinding[J]. Acta Metall. Sin., 2014, 50: 423(陈燕, 伍翠兰, 谢盼等. 机械磨擦制备的Fe-20Mn-3Al-3Si钢表面相变强化层[J]. 金属学报, 2014, 50: 423)
[29] Xu H J, Xu Y B, Jiao H T, et al.Influence of grain size and texture prior to warm rolling on microstructure, texture and magnetic properties of Fe-6.5%wt%Si steel[J]. J. Magn. Magn. Mater., 2018, 453: 236
[30] De Moor E, Matlock D K, Speer J G, et al.Austenite stabilization through manganese enrichment[J]. Scr. Mater., 2011, 64: 185
[31] Lee S, Kim J, Lee S J, et al.Effect of nitrogen on the critical strain for dynamic strain aging in high-manganese twinning-induced plasticity steel[J]. Scr. Mater., 2011, 65: 528
[32] Oh K H, Jeong J S, Koo Y M, et al.The evolution of the rolling and recrystallization textures in cold-rolled Al containing high Mn austenitic steels[J]. Mater. Chem. Phys., 2015, 161: 9
[33] Lee D A.Elastic properties of thin films of cubic system[J]. Thin Solid Films, 2003, 434: 183
[34] Lee D A.A stability criterion for deformation and deposition textures of metals during annealing[J]. J. Mater. Process. Technol., 2001, 117: 307
[1] 王滨, 牛梦超, 王威, 姜涛, 栾军华, 杨柯. Cu马氏体时效不锈钢的组织与强韧性[J]. 金属学报, 2023, 59(5): 636-646.
[2] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[3] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[4] 王玉, 胡斌, 刘星毅, 张浩, 张灏云, 官志强, 罗海文. 退火温度对含Nb高锰钢力学和阻尼性能的影响[J]. 金属学报, 2021, 57(12): 1588-1594.
[5] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[6] 金淼, 李文权, 郝硕, 梅瑞雪, 李娜, 陈雷. 固溶温度对Mn-N型双相不锈钢拉伸变形行为的影响[J]. 金属学报, 2019, 55(4): 436-444.
[7] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[8] 陈雷, 郝硕, 邹宗园, 韩舒婷, 张荣强, 郭宝峰. TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si在循环变形条件下的力学特性[J]. 金属学报, 2019, 55(12): 1495-1502.
[9] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
[10] 丁浩, 崔喜平, 许长寿, 李爱滨, 耿林, 范国华, 陈俊锋, 孟松鹤. 连续玄武岩纤维增强铝基层状复合材料的制备与力学特性[J]. 金属学报, 2018, 54(8): 1171-1178.
[11] 李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
[12] 左锦荣,侯陇刚,史金涛,崔华,庄林忠,张济山. 两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响*[J]. 金属学报, 2016, 52(9): 1105-1114.
[13] 王丽娜,杨平,毛卫民. 高锰TRIP钢高速拉伸时的马氏体转变行为分析*[J]. 金属学报, 2016, 52(9): 1045-1052.
[14] 尹炎祺,伍翠兰,谢盼,朱恺,田松栗,韩梅,陈江华. 冷轧及退火制备的超细晶粒双相Mn12Ni2MoTi(Al)钢*[J]. 金属学报, 2016, 52(12): 1527-1535.
[15] 王斌, 刘振宇, 冯洁, 周晓光, 王国栋. 超快速冷却条件下碳素钢中纳米渗碳体的析出行为和强化作用*[J]. 金属学报, 2014, 50(6): 652-658.