Please wait a minute...
金属学报  2016, Vol. 52 Issue (9): 1105-1114    DOI: 10.11900/0412.1961.2015.00645
  论文 本期目录 | 过刊浏览 |
两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响*
左锦荣1,侯陇刚1(),史金涛1,崔华2,庄林忠1,张济山1
1 北京科技大学新金属材料国家重点实验室, 北京 100083
2 北京科技大学材料科学与工程学院, 北京 100083
PRECIPITATES AND THE EVOLUTION OF GRAIN STRUCTURES DURING DOUBLE-STEP ROLLING OF HIGH-STRENGTH ALUMINUM ALLOYAND RELATED PROPERTIES
Jinrong ZUO1,Longgang HOU1(),Jintao SHI1,Hua CUI2,Linzhong ZHUANG1,Jishan ZHANG1
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

左锦荣,侯陇刚,史金涛,崔华,庄林忠,张济山. 两阶段轧制变形过程中高强铝合金析出相与晶粒结构演变及其对性能的影响*[J]. 金属学报, 2016, 52(9): 1105-1114.
Jinrong ZUO, Longgang HOU, Jintao SHI, Hua CUI, Linzhong ZHUANG, Jishan ZHANG. PRECIPITATES AND THE EVOLUTION OF GRAIN STRUCTURES DURING DOUBLE-STEP ROLLING OF HIGH-STRENGTH ALUMINUM ALLOYAND RELATED PROPERTIES[J]. Acta Metall Sin, 2016, 52(9): 1105-1114.

全文: PDF(1896 KB)   HTML
  
摘要: 

与7055铝合金的传统热轧(CHR)对比, 制定了新的两阶段热轧工艺(DHR), 分别采用CHR和DHR对7055铝合金板材进行轧制, 研究了DHR工艺对7055铝合金析出相和亚结构的影响, 分析了DHR和CHR处理后合金组织、力学性能的差异. 结果表明: 增加预变形量可提高析出相的球化程度(改变析出相形貌)但不影响其面积分数; 中间高温短时退火可形成大量有序排布的亚结构; 后续进一步热轧过程中, 仍存在的大量球形析出相钉扎位错和亚晶界, 且随累积应变增大, 小角晶界逐渐转变成大角晶界而使晶粒细化. 采用最佳的形变热处理工艺(固溶+预变形(300 ℃, 20%)+中间退火(430 ℃, 5 min)+热变形(400 ℃, 60%))可在保证高强度的同时使7055铝合金板材断后延伸率比CHR工艺提高约25%.

关键词 高强铝合金形变热处理晶粒细化析出相力学性能    
Abstract

The Al-Zn-Mg-Cu series alloys has been widely used in the aircraft, automotive, ship-building and nuclear industries for the advantages of excellent combination of low density, high strength to weight ratio, good toughness and high corrosion resistance, etc.. Most of the researchers focused on alloying and heat treatment at aging temperature, however, rare work had paid attentions on the deformation process, and the microstructure evolution and mechanical properties has not been analyzed completely. Grain refinement can not only improve the strength and hardness, but also the plasticity and toughness of the alloy. Thermo-mechanical treatment is an efficient and economical treatment for obtain grain refinement by a combination of the deformation and heat treatment. In the present work, an improved thermo-mechanical processing, double step hot rolling (DHR), including low temperature pre-deformation, intermediate short-term annealing and final hot rolling has been proposed, aiming to investigate the microstructural evolution, strain induced precipitation and grain refinement mechanism of the alloys during the DHR process. A 7055 aluminum plate has also been manufactured by the conventional hot rolling (CHR) route. The corresponding microstructure evolution and mechanical properties were investigated by OM, XRD, TEM, SEM, EBSD and tensile test. The results reveal that the grain refinement is mainly preceded via dislocation rearrangement and low angle grain boundaries migration, which in turn leads to the pinning effects of strain induced precipitates. Low temperature pre-deformation can accelerate the formation and spheroidization of fine precipitates. The pre-deformation makes influence on the morphology and average size of precipitates without changing their area fraction. The precipitates generated by the pre-deformation can exert significant drag force to the migration of the grain boundaries and dislocation movements, which subsequently promotes the formation of dislocation cells. Although some smaller particles have been dissolved into the matrix during intermediate annealing treatment, some particles are still fine and can pin the dislocation boundaries. At the same time, the activated dislocation boundaries rearranged to form polygon sub-grains. Grains are further elongated after the final hot rolling. The low angle grain boundaries (like sub-grain boundaries) into high angle grain boundaries transition will be accelerated if the motion of boundaries is impeded by the particles. And the new small grains formed near the original grain boundaries can finally cause the fine-grained structures. The results indicate that the optimum thermo-mechanical treatment of 7055 aluminum alloy may be solid heat treatment+pre-deformation (300 ℃, 20%)+intermediate annealing (430 ℃, 5 min)+hot deformation (400 ℃, 60%). The elongation of the alloy produced by the proposed process can increase by 25% without strength loss comparing with that of conventional hot rolling. And the present DHR process is supposed to be a good alternative manufacturing process for the aluminum alloys to obtain fine grain structured heat-treatable sheets.

Key wordshigh-strength aluminum alloy    thermo-mechanical treatment    grain refinement    precipitation    mechanical property
收稿日期: 2015-12-15     
基金资助:* 国家自然科学基金项目51401016, 现代交通金属材料与加工技术北京实验室项目及新金属材料国家重点实验室基金项目2011Z-05资助
Process 1st-rolling IA 2nd-rolling dL / μm dT / μm
CHR - - 400 ℃, 80% > 100 7.0
DHR1 300 ℃, 20% 430 ℃, 5 min 400 ℃, 60% 27.1 9.0
DHR2 300 ℃, 40% 430 ℃, 5 min 400 ℃, 40% 40.0 8.4
DHR3 300 ℃, 60% 430 ℃, 5 min 400 ℃, 20% 88.6 8.3
表1  本工作所设计形变热处理工艺的具体参数及不同工艺板材的最终晶粒尺寸
Pass Reduction / mm h0 / mm h1 / mm ε˙ / s-1
1 3 15 12 2.33
2 3 12 9 3.01
3 1.5 9 7.5 2.70
4 1.5 7.5 6 3.30
5 1 6 5 3.32
6 1 5 4 4.05
7 1 4 3 5.21
表2  轧制工艺参数
图1  不同工艺条件下热轧板再结晶处理后的EBSD像
图2  预变形量对析出相和亚结构的影响
图3  不同工艺7055铝合金的XRD谱
图4  中间短时退火后7055铝合金中析出相形貌的TEM和SEM像
图5  不同预变形试样经中间短时退火后的亚结构形貌的TEM像
图6  7055铝合金最终热轧后的OM像和EBSD像
图7  7055铝合金不同工艺最终热轧后的TEM像
图8  不同工艺下小角度晶界比例
图9  固溶时效处理后合金的工程应力-应变曲线、真应力-应变曲线和加工硬化率-真应变曲线
[1] Lukasak D A, Hart R M.Light Met Age, 1991; 2(9) : 11
[2] Mcqueen H J, Celliers O C.Can Metall Quart, 1996; 35: 305
[3] Zhang H, Li L, Yuan D, Peng D.Mater Charact, 2007; 58: 168
[4] Bergsma S C, Kassner M E, Li X, Wall M A.Mater Sci Eng, 1998; A254: 112
[5] Petch N J.Iron Steel Inst, 1953; 173: 25
[6] Hall E O.Proc Phys Soc London, 1951; 643: 747
[7] Yan K, Sun Y S, Bai J, Xue F.Acta Metall Sin, 2010; 46: 27
[7] (严凯, 孙扬善, 白晶, 薛烽. 金属学报, 2010; 46: 27)
[8] Zhang K, Wang W G, Fang X Y, Guo H.Acta Metall Sin, 2008; 44: 652
[8] (张坤, 王卫国, 方晓英, 郭红. 金属学报, 2008; 44: 652)
[9] Yin Z M, Chen X Q, Zhang S Q, Zhang W B.Acta Metall Sin, 1991; 27(2): 52
[9] (尹志民, 陈小群, 章泗琪, 张伟斌. 金属学报, 1991; 27(2): 52)
[10] Zhang Y Y, Deng Y L, Wan L, Zhang X M.Acta Metall Sin, 2011; 47: 1270
[10] (张云崖, 邓运来, 万里, 张新明. 金属学报, 2011; 47: 1270)
[11] Peng X Y, Guo M X, Wang X F, Cui L, Zhang J S, Zhuang L Z.Acta Metall Sin, 2015; 51: 169
[11] (彭祥阳, 郭明星, 汪小锋, 崔莉, 张济山, 庄林忠. 金属学报, 2015; 51: 169)
[12] Wert J A, Paton N E, Hamilton C H, Mahoney M W.Metall Mater Trans, 1981; 12A: 1267
[13] Huo W T, Hou L G, Lang Y J, Cui H, Zhuang L Z, Zhang J S.Mater Sci Eng, 2015; A626: 86
[14] Waldman J, Sulinski H, Markus H.Metall Mater Trans, 1974; 5B: 573
[15] Lang Y J, Cai Y H, Cui H, Zhang J S.Mater Des, 2011; 32: 4241
[16] Lang Y J, Cui H, Cai Y H, Zhang J S.Mater Des, 2012; 39: 220
[17] Cai Y H, Lang Y J, Cao L Y, Zhang J S.Mater Sci Eng, 2012; A549: 100
[18] Lang Y J, Zhou G X, Hou L G, Zhang J S, Zhuang L Z.Mater Des, 2015; 88: 625
[19] Zhao D W, Tie W L.J Appl Sci, 1995; (1): 103
[19] (赵德文, 铁维麟. 应用科学学报, 1995; (1): 103)
[20] Huo W T, Hou L L, Cui H, Zhuang L Z, Zhang J S.Mater Sci Eng, 2014; A618: 244
[21] Doherty R D. Physical Metallurgy .4th Ed., Oxford:North-Holland, 1996: 1363
[22] Yu Y N. Metallography Principle.Bejing: Metallurgical Industry Press, 2013: 441
[22] (余永宁. 金属学原理. 北京: 冶金工业出版社, 2013: 441)
[23] Alloyeau D, Prevot G, Le Bouar Y, Oikawa T, Langlois C, Loiseau A, Ricolleau C. Phys Rev Lett, 2010; 105: 3524
[24] Sakai T, Miura H, Goloborodko A, Sitdikov O.Acta Mater, 2009; 57: 153
[25] Zener C.Appl Phys Lett, 1949; 20: 950
[26] Hurley P J, Humphreys F J.Acta Mater, 2003; 51: 1087
[27] Gang J W, Shi B Q, Chen R S, Ke W.Acta Metall Sin, 2012; 48: 526
[27] (刚建伟, 施斌卿, 陈荣石, 柯伟. 金属学报, 2012; 48: 526)
[28] Hughes D A, Hansen N.Acta Mater, 1997; 45: 3871
[29] Humphreys M R R J.Acta Metall, 1986; 34: 2259
[30] Sun P L, Zhao Y H, Tseng T Y, Su J R, Lavernia E J.Mater Sci Eng, 2010; A527: 5287
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[9] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[10] 梁凯, 姚志浩, 谢锡善, 姚凯俊, 董建新. 新型耐热合金SP2215组织与性能的关联性[J]. 金属学报, 2023, 59(6): 797-811.
[11] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[14] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[15] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.