Please wait a minute...
金属学报  2018, Vol. 54 Issue (12): 1777-1784    DOI: 10.11900/0412.1961.2018.00129
  本期目录 | 过刊浏览 |
Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响
李冬冬1,2, 钱立和1,2(), 刘帅1,2, 孟江英1, 张福成1,2
1 燕山大学亚稳材料制备技术与科学国家重点实验室 秦皇岛 066004
2 燕山大学国家冷轧板带装备及工艺工程技术研究中心 秦皇岛 066004
Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels
Dongdong LI1,2, Lihe QIAN1,2(), Shuai LIU1,2, Jiangying MENG1, Fucheng ZHANG1,2
1 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
2 National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China
引用本文:

李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
Dongdong LI, Lihe QIAN, Shuai LIU, Jiangying MENG, Fucheng ZHANG. Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels[J]. Acta Metall Sin, 2018, 54(12): 1777-1784.

全文: PDF(6127 KB)   HTML
摘要: 

利用室温单向拉伸实验,结合OM、TEM、SEM-EBSD等观察手段,对比研究了2种Mn含量(13Mn和22Mn,质量分数,%) Fe-Mn-C系高锰奥氏体孪生诱发塑性(TWIP)钢的拉伸性能、孪生演化规律及应变硬化行为。结果表明,随Mn含量的增加,钢的屈服强度与抗拉强度降低而断裂延伸率增加。在低应变时,Mn含量的增加延缓了钢中形变孪晶的形成;但在高应变时,Mn含量的增加加快了孪晶的形成速率,进而使高锰钢中的孪晶体积分数反而比低锰钢中的高。同时,形变孪晶的厚度随Mn含量的增加而增加。最后,对2种Mn含量的Fe-Mn-C系TWIP钢的孪生及拉伸变形行为进行了讨论。

关键词 高锰钢孪生诱发塑性钢形变孪晶拉伸性能应变硬化动态应变时效    
Abstract

Twinning-induced plasticity (TWIP) steels exhibit excellent mechanical properties including high tensile strength and good plasticity owing to their high strain-hardening rate. The high strain-hardening rate results mainly from deformation twinning; in addition, plane slip and dynamic strain ageing also have some contribution to strain-hardening rate. Until now, the influences of some alloy elements such as C, Al and Si on tensile properties of Fe-Mn-C based TWIP steels have received much attention. However, the effect of Mn content on the microstructure and tensile properties of twinning-dominated Fe-Mn-C TWIP steels is still not clear. In this work, the microstructure, tensile properties and strain hardening behavior of two Fe-Mn-C TWIP steels (Fe-13Mn-1.0C and Fe-22Mn-1.0C, mass fraction, %) were studied by using OM, TEM, SEM-EBSD and monotonic tensile tests. The results show that the yield and tensile strengths of the steel decrease while the elongation to fracture increases with the increase of Mn content. At low tensile strains, the increase of Mn content delays the formation of deformation twins. However, at higher strain level, the deformation twinning rate becomes higher and hence more deformation twins are produced in the steel with higher Mn content than that in the steel with lower Mn content. Furthermore, the thickness of deformation twins increases with increasing the Mn content. The twinning and tensile deformation behavior in the two steels are also discussed.

Key wordshigh manganese steel    TWIP steel    deformation twin    tensile property    strain hardening    dynamic strain ageing
收稿日期: 2018-04-08     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金项目No.51171166
作者简介:

作者简介 李冬冬,女,1994年生,博士生

图1  Fe-13Mn-1.0C和Fe-22Mn-1.0C钢固溶处理后的OM像
Steel Mass fraction / % SFE
C Mn Al Si S P Fe mJm-2
Fe-13Mn-1.0C 0.99 12.95 <0.011 <0.001 0.007 <0.001 Bal. 27
Fe-22Mn-1.0C 0.97 21.97 <0.001 <0.001 0.018 <0.001 Bal. 37
表1  2种TWIP钢的化学成分及根据文献[3]计算的层错能
图2  Fe-13Mn-1.0C和Fe-22Mn-1.0C钢的工程应力-应变及应变硬化率曲线
图3  2种钢在拉伸应变为0.6时纵截面EBSD反极图
图4  2种钢拉伸至不同应变及断裂时纵截面组织的SEM像
图5  2种钢孪晶面积分数随拉伸应变的变化趋势
图6  2种钢拉断后的TEM像
图7  2种钢拉断后的孪晶厚度及孪晶间距统计结果
[1] Frommeyer G, Brüx U, Neumann P.Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes[J]. ISIJ Int., 2003, 43: 438
[2] Barbier D, Gey N, Allain S, et al.Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions[J]. Mater. Sci. Eng., 2009, A500: 196
[3] Ghasri-Khouzani M, McDermid J R. Effect of carbon content on the mechanical properties and microstructural evolution of Fe-22Mn-C steels[J]. Mater. Sci. Eng., 2015, A621: 118
[4] Bouaziz O, Allain S, Scott C.Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels[J]. Scr. Mater., 2008, 58: 484
[5] Vercammen S, Blanpain B, De Cooman B C, et al. Cold rolling behavior of an austenitic Fe-30Mn-3Al-3Si TWIP steel: The importance of deformation twinning[J]. Acta Mater., 2004, 52: 2005
[6] Kim J K, De Cooman B C. Stacking fault energy and deformation mechanisms in Fe-xMn-0.6C-yAl TWIP steel[J]. Mater. Sci. Eng., 2016, A676: 216
[7] Liu F, Dan W J, Zhang W G.Strain hardening model of TWIP steels with manganese content[J]. Mater. Sci. Eng., 2016, A674: 178
[8] Jin J E, Lee Y K.Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel[J]. Acta Mater., 2012, 60: 1680
[9] Liu S, Qian L H, Meng J Y, et al.On the more persistently-enhanced strain hardening in carbon-increased Fe-Mn-C twinning-induced plasticity steel[J]. Mater. Sci. Eng., 2015, A639: 425
[10] Liu S, Qian L H, Meng J Y, et al.Simultaneously increasing both strength and ductility of Fe-Mn-C twinning-induced plasticity steel via Cr/Mo alloying[J]. Scr. Mater., 2017, 127: 10
[11] Chen X J.High Manganese Steel [M]. Beijing: China Machine Press, 1989: 377(陈希杰. 高锰钢[M]. 北京: 机械工业出版社, 1989: 377)
[12] Bouaziz O, Allain S, Scott C P, et al.High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 141
[13] Ding S X, Chang C P, Tu J F, et al.Microstructure and tensile behavior of 15-24 wt-% Mn TWIP steels[J]. Mater. Sci. Technol., 2013, 29: 1048
[14] Wang Y C, Lan P, Li Y, et al.Effect of alloying elements on mechanical behavior of Fe-Mn-C TWIP steel[J]. J. Mater. Eng., 2015, 43(9): 30(王玉昌, 兰鹏, 李杨等. 合金元素对Fe-Mn-C系TWIP钢力学行为的影响[J]. 材料工程, 2015, 43(9): 30)
[15] Bouaziz O, Zurob H, Chehab B, et al.Effect of chemical composition on work hardening of Fe-Mn-C TWIP steels[J]. Mater. Sci. Technol., 2011, 27: 707
[16] Dastur Y N, Leslie W C.Mechanism of work hardening in Hadfield manganese steel[J]. Metall. Trans., 1981, 12A: 749
[17] Qian L H, Guo P C, Zhang F C, et al.Abnormal room temperature serrated flow and strain rate dependence of critical strain of a Fe-Mn-C twin-induced plasticity steel[J]. Mater. Sci. Eng., 2013, A561: 266
[18] Qian L H, Guo P C, Meng J Y, et al.Unusual grain-size and strain-rate effects on the serrated flow in FeMnC twin-induced plasticity steels[J]. J. Mater. Sci., 2013, 48: 1669
[19] Yoo J D, Park K T.Microband-induced plasticity in a high Mn-Al-C light steel[J]. Mater. Sci. Eng., 2008, A496: 417
[20] Chen L, Kim H S, Kim S K, et al.Localized deformation due to portevin-LeChatelier effect in 18Mn-0.6C TWIP austenitic steel[J]. ISIJ Int., 2007, 47: 1804
[21] Saeed-Akbari A, Mosecker L, Schwedt A, et al.Characterization and prediction of flow behavior in high-manganese twinning induced plasticity steels: Part I. Mechanism maps and work-hardening behavior[J]. Metall. Mater. Trans., 2012, 43A: 1688
[22] Jeong K, Jin J E, Jung Y S, et al.The effects of Si on the mechanical twinning and strain hardening of Fe-18Mn-0.6C twinning-induced plasticity steel[J]. Acta Mater., 2013, 61: 3399
[23] Jung l C, Cho L, De Cooman B C. In situ observation of the influence of Al on deformation-induced twinning in TWIP steel[J]. ISIJ Int., 2015, 55: 870
[24] Pierce D T, Jiménez J A, Bentley J, et al.The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation[J]. Acta Mater., 2015, 100: 178
[25] Zhu R F, Lv Y P, Li S T, et al.Valence electron structure of high manganese steel and its intrinsic property[J]. Chin. Sci. Bull., 1996, 41: 1336(朱瑞富, 吕宇鹏, 李士同等. 高锰钢的价电子结构及其本质特性[J]. 科学通报, 1996, 41: 1336)
[26] Zhang Y, Tao N R, Lu K.Effect of stacking-fault energy on deformation twin thickness in Cu-Al alloys[J]. Scr. Mater., 2009, 60: 211
[27] Wang S H, Liu Z Y, Wang G D.Influence of grain size on TWIP effect in a TWIP steel[J]. Acta Metall. Sin., 2009, 45: 1083(王书晗, 刘振宇, 王国栋. TWIP钢中晶粒尺寸对TWIP效应的影响[J]. 金属学报, 2009, 45: 1083)
[1] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[2] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[3] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[4] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[5] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[6] 赵永好, 毛庆忠. 纳米金属结构材料的韧化[J]. 金属学报, 2022, 58(11): 1385-1398.
[7] 王玉, 胡斌, 刘星毅, 张浩, 张灏云, 官志强, 罗海文. 退火温度对含Nb高锰钢力学和阻尼性能的影响[J]. 金属学报, 2021, 57(12): 1588-1594.
[8] 刘先锋, 刘冬, 刘仁慈, 崔玉友, 杨锐. Ti-43.5Al-4Nb-1Mo-0.1B合金的包套热挤压组织与拉伸性能[J]. 金属学报, 2020, 56(7): 979-987.
[9] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[10] 余晨帆, 赵聪聪, 张哲峰, 刘伟. 选区激光熔化316L不锈钢的拉伸性能[J]. 金属学报, 2020, 56(5): 683-692.
[11] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[12] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[13] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[14] 刘征,刘建荣,赵子博,王磊,王清江,杨锐. 电子束快速成形制备TC4合金的组织和拉伸性能分析[J]. 金属学报, 2019, 55(6): 692-700.
[15] 董福涛,薛飞,田亚强,陈连生,杜林秀,刘相华. 退火温度对TWIP钢组织性能和氢致脆性的影响[J]. 金属学报, 2019, 55(6): 792-800.