|
|
Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响 |
李冬冬1,2, 钱立和1,2( ), 刘帅1,2, 孟江英1, 张福成1,2 |
1 燕山大学亚稳材料制备技术与科学国家重点实验室 秦皇岛 066004 2 燕山大学国家冷轧板带装备及工艺工程技术研究中心 秦皇岛 066004 |
|
Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels |
Dongdong LI1,2, Lihe QIAN1,2( ), Shuai LIU1,2, Jiangying MENG1, Fucheng ZHANG1,2 |
1 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China 2 National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China |
引用本文:
李冬冬, 钱立和, 刘帅, 孟江英, 张福成. Mn含量对Fe-Mn-C孪生诱发塑性钢拉伸变形行为的影响[J]. 金属学报, 2018, 54(12): 1777-1784.
Dongdong LI,
Lihe QIAN,
Shuai LIU,
Jiangying MENG,
Fucheng ZHANG.
Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels[J]. Acta Metall Sin, 2018, 54(12): 1777-1784.
[1] | Frommeyer G, Brüx U, Neumann P.Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes[J]. ISIJ Int., 2003, 43: 438 | [2] | Barbier D, Gey N, Allain S, et al.Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions[J]. Mater. Sci. Eng., 2009, A500: 196 | [3] | Ghasri-Khouzani M, McDermid J R. Effect of carbon content on the mechanical properties and microstructural evolution of Fe-22Mn-C steels[J]. Mater. Sci. Eng., 2015, A621: 118 | [4] | Bouaziz O, Allain S, Scott C.Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels[J]. Scr. Mater., 2008, 58: 484 | [5] | Vercammen S, Blanpain B, De Cooman B C, et al. Cold rolling behavior of an austenitic Fe-30Mn-3Al-3Si TWIP steel: The importance of deformation twinning[J]. Acta Mater., 2004, 52: 2005 | [6] | Kim J K, De Cooman B C. Stacking fault energy and deformation mechanisms in Fe-xMn-0.6C-yAl TWIP steel[J]. Mater. Sci. Eng., 2016, A676: 216 | [7] | Liu F, Dan W J, Zhang W G.Strain hardening model of TWIP steels with manganese content[J]. Mater. Sci. Eng., 2016, A674: 178 | [8] | Jin J E, Lee Y K.Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel[J]. Acta Mater., 2012, 60: 1680 | [9] | Liu S, Qian L H, Meng J Y, et al.On the more persistently-enhanced strain hardening in carbon-increased Fe-Mn-C twinning-induced plasticity steel[J]. Mater. Sci. Eng., 2015, A639: 425 | [10] | Liu S, Qian L H, Meng J Y, et al.Simultaneously increasing both strength and ductility of Fe-Mn-C twinning-induced plasticity steel via Cr/Mo alloying[J]. Scr. Mater., 2017, 127: 10 | [11] | Chen X J.High Manganese Steel [M]. Beijing: China Machine Press, 1989: 377(陈希杰. 高锰钢[M]. 北京: 机械工业出版社, 1989: 377) | [12] | Bouaziz O, Allain S, Scott C P, et al.High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships[J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 141 | [13] | Ding S X, Chang C P, Tu J F, et al.Microstructure and tensile behavior of 15-24 wt-% Mn TWIP steels[J]. Mater. Sci. Technol., 2013, 29: 1048 | [14] | Wang Y C, Lan P, Li Y, et al.Effect of alloying elements on mechanical behavior of Fe-Mn-C TWIP steel[J]. J. Mater. Eng., 2015, 43(9): 30(王玉昌, 兰鹏, 李杨等. 合金元素对Fe-Mn-C系TWIP钢力学行为的影响[J]. 材料工程, 2015, 43(9): 30) | [15] | Bouaziz O, Zurob H, Chehab B, et al.Effect of chemical composition on work hardening of Fe-Mn-C TWIP steels[J]. Mater. Sci. Technol., 2011, 27: 707 | [16] | Dastur Y N, Leslie W C.Mechanism of work hardening in Hadfield manganese steel[J]. Metall. Trans., 1981, 12A: 749 | [17] | Qian L H, Guo P C, Zhang F C, et al.Abnormal room temperature serrated flow and strain rate dependence of critical strain of a Fe-Mn-C twin-induced plasticity steel[J]. Mater. Sci. Eng., 2013, A561: 266 | [18] | Qian L H, Guo P C, Meng J Y, et al.Unusual grain-size and strain-rate effects on the serrated flow in FeMnC twin-induced plasticity steels[J]. J. Mater. Sci., 2013, 48: 1669 | [19] | Yoo J D, Park K T.Microband-induced plasticity in a high Mn-Al-C light steel[J]. Mater. Sci. Eng., 2008, A496: 417 | [20] | Chen L, Kim H S, Kim S K, et al.Localized deformation due to portevin-LeChatelier effect in 18Mn-0.6C TWIP austenitic steel[J]. ISIJ Int., 2007, 47: 1804 | [21] | Saeed-Akbari A, Mosecker L, Schwedt A, et al.Characterization and prediction of flow behavior in high-manganese twinning induced plasticity steels: Part I. Mechanism maps and work-hardening behavior[J]. Metall. Mater. Trans., 2012, 43A: 1688 | [22] | Jeong K, Jin J E, Jung Y S, et al.The effects of Si on the mechanical twinning and strain hardening of Fe-18Mn-0.6C twinning-induced plasticity steel[J]. Acta Mater., 2013, 61: 3399 | [23] | Jung l C, Cho L, De Cooman B C. In situ observation of the influence of Al on deformation-induced twinning in TWIP steel[J]. ISIJ Int., 2015, 55: 870 | [24] | Pierce D T, Jiménez J A, Bentley J, et al.The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe-Mn-Al-Si steels during tensile deformation[J]. Acta Mater., 2015, 100: 178 | [25] | Zhu R F, Lv Y P, Li S T, et al.Valence electron structure of high manganese steel and its intrinsic property[J]. Chin. Sci. Bull., 1996, 41: 1336(朱瑞富, 吕宇鹏, 李士同等. 高锰钢的价电子结构及其本质特性[J]. 科学通报, 1996, 41: 1336) | [26] | Zhang Y, Tao N R, Lu K.Effect of stacking-fault energy on deformation twin thickness in Cu-Al alloys[J]. Scr. Mater., 2009, 60: 211 | [27] | Wang S H, Liu Z Y, Wang G D.Influence of grain size on TWIP effect in a TWIP steel[J]. Acta Metall. Sin., 2009, 45: 1083(王书晗, 刘振宇, 王国栋. TWIP钢中晶粒尺寸对TWIP效应的影响[J]. 金属学报, 2009, 45: 1083) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|