|
|
TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si在循环变形条件下的力学特性 |
陈雷1,2,郝硕2,邹宗园2,韩舒婷2,张荣强2,郭宝峰2( ) |
1. 燕山大学国家冷轧板带装备及工艺工程技术研究中心 秦皇岛 066004 2. 燕山大学机械工程学院 秦皇岛 066004 |
|
Mechanical Characteristics of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si During Cyclic Deformation |
CHEN Lei1,2,HAO Shuo2,ZOU Zongyuan2,HAN Shuting2,ZHANG Rongqiang2,GUO Baofeng2( ) |
1. National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China 2. College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China |
引用本文:
陈雷, 郝硕, 邹宗园, 韩舒婷, 张荣强, 郭宝峰. TRIP型双相不锈钢Fe-19.6Cr-2Ni-2.9Mn-1.6Si在循环变形条件下的力学特性[J]. 金属学报, 2019, 55(12): 1495-1502.
CHEN Lei,
HAO Shuo,
ZOU Zongyuan,
HAN Shuting,
ZHANG Rongqiang,
GUO Baofeng.
Mechanical Characteristics of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si During Cyclic Deformation[J]. Acta Metall Sin, 2019, 55(12): 1495-1502.
[1] | Zhao Y, Zhang W N, Liu X, et al. Development of TRIP-aided lean duplex stainless steel by twin-roll strip casting and its deformation mechanism [J]. Metall. Mater. Trans., 2016, 47A: 6292 | [2] | Herrera C, Ponge D, Raabe D. Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability [J]. Acta Mater., 2011, 59: 4653 | [3] | Magnin T, Lardon J M, Coudreuse L. Low Cycle Fatigue [M]. West Conshohocken, PA: ASTM International, 1988: 812 | [4] | Mateo A, Llanes L, Iturgoyen L, et al. Cyclic stress-strain response and dislocation substructure evolution of a ferrite-austenite stainless steel [J]. Acta Mater., 1996, 44: 1143 | [5] | Polák J, Petrenec M, Kruml T. Cyclic plastic response and fatigue life in superduplex 2507 stainless steel [J]. Int. J. Fatigue, 2010, 32: 279 | [6] | Guo B F, Zhang Q F, Chen L, et al. Influence of annealing temperature on the strain-hardening behavior of a lean duplex stainless steel [J]. Mater. Sci. Eng., 2018, A722: 216 | [7] | Kang J Y, Kim H, Kim K I, et al. Effect of austenitic texture on tensile behavior of lean duplex stainless steel with transformation induced plasticity (TRIP) [J]. Mater. Sci. Eng., 2017, A681: 114 | [8] | Choi J Y, Ji J H, Hwang S W, et al. TRIP aided deformation of a near-Ni-free, Mn-N bearing duplex stainless steel [J]. Mater. Sci. Eng., 2012, A535: 32 | [9] | Chen L, Li F, Zhang Y J, et al. Calculation for the phase diagram and stability of metastable austenite in a TRIP/TWIP duplex stainless steel [J]. J. Yanshan Univ., 2016, 40: 35 | [9] | (陈 雷, 李 飞, 张英杰等. 一种TRIP/TWIP型双相不锈钢的相图及其亚稳奥氏体组织稳定性计算 [J]. 燕山大学学报, 2016, 40: 35) | [10] | Choi J Y, Ji J H, Hwang S W, et al. Effects of nitrogen content on TRIP of Fe-20Cr-5Mn-xN duplex stainless steel [J]. Mater. Sci. Eng., 2012, A534: 673 | [11] | Choi J Y, Ji J H, Hwang S W, et al. Strain induced martensitic transformation of Fe-20Cr-5Mn-0.2Ni duplex stainless steel during cold rolling: Effects of nitrogen addition [J]. Mater. Sci. Eng., 2011, A528: 6012 | [12] | Baudry G, Pineau A. Influence of strain-induced martensitic transformation on the low-cycle fatigue behavior of a stainless steel [J]. Mater. Sci. Eng., 1977, 28: 229 | [13] | Glage A, Weidner A, Biermann H. Effect of austenite stability on the low cycle fatigue behavior and microstructure of high alloyed metastable austenitic cast TRIP-steels [J]. Procedia Eng., 2010, 2: 2085 | [14] | Droste M, Ullrich C, Motylenko M, et al. Fatigue behavior of an ultrafine-grained metastable CrMnNi steel tested under total strain control [J]. Int. J. Fatigue, 2018, 106: 143 | [15] | Glage A, Weidner A, Biermann H. Cyclic deformation behaviour of three austenitic cast CrMnNi TRIP/TWIP steels with various Ni content [J]. Steel Res. Int., 2011, 82: 1040 | [16] | Pessoa D F, Kirchhoff G, Zimmermann M. Influence of loading frequency and role of surface micro-defects on fatigue behavior of metastable austenitic stainless steel AISI 304 [J]. Int. J. Fatigue, 2017, 103: 48 | [17] | Ackermann S, Kulawinski D, Henkel S, et al. Biaxial in-phase and out-of-phase cyclic deformation and fatigue behavior of an austenitic TRIP steel [J]. Int. J. Fatigue, 2014, 67: 123 | [18] | Alvarez-Armas I, Marinelli M C, Here?ú S, et al. On the cyclic softening behavior of SAF 2507 duplex stainless steel [J]. Acta Mater., 2006, 54: 5041 | [19] | Mateo A, Gironès A, Keichel J, et al. Cyclic deformation behaviour of superduplex stainless steels [J]. Mater. Sci. Eng., 2001, A314: 176 | [20] | Lillbacka R, Chai G, Ekh M, et al. Cyclic stress-strain behavior and load sharing in duplex stainless steels: Aspects of modeling and experiments [J]. Acta Mater., 2007, 55: 5359 | [21] | Alvarez-Armas I. Low cycle fatigue behavior on duplex stainless steels [J]. Trans. Indian Inst. Met, 2010, 63: 159 | [22] | Akdut N. Phase morphology and fatigue lives of nitrogen alloyed duplex stainless steels [J]. Int. J. Fatigue, 1999, 21: S97 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|