| 
					引用本文:
						|  |  
    					|  |  
    					| 孪晶界在316L不锈钢三维晶界网络中的分布特征 |  
						| 刘廷光1, 夏爽2(  ), 白琴2, 周邦新2, 陆永浩1 |  
					| 1 北京科技大学国家材料服役安全科学中心 北京 100083 2 上海大学材料科学与工程学院 上海 200072
 |  
						|  |  
    					| Distribution Characteristics of Twin-Boundaries in Three-Dimensional Grain Boundary Network of 316L Stainless Steel |  
						| Tingguang LIU1, Shuang XIA2(  ), Qin BAI2, Bangxin ZHOU2, Yonghao LU1 |  
						| 1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China 2 School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
 |  
								刘廷光, 夏爽, 白琴, 周邦新, 陆永浩. 孪晶界在316L不锈钢三维晶界网络中的分布特征[J]. 金属学报, 2018, 54(10): 1377-1386.	
																												Tingguang LIU,
																								Shuang XIA,
																								Qin BAI,
																								Bangxin ZHOU,
																												Yonghao LU. 
				Distribution Characteristics of Twin-Boundaries in Three-Dimensional Grain Boundary Network of 316L Stainless Steel[J]. Acta Metall Sin, 2018, 54(10): 1377-1386.
 
					
						| 
								
									|  
          
          
            
             
			              
            
									            
									                
																														  
																| | [1] | Cahn R W.The Coming of Materials Science[M]. Oxford: Pergamon, 2001: 213 |  | [2] | Meyers M A, Chawla K K.Mechanical Behavior of Materials [M]. 2nd Ed., Cambridge: Cambridge University Press, 2009: 346 |  | [3] | Bhandari Y, Sarkar S, Groeber M, et al.3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis[J]. Comput. Mater. Sci., 2007, 41: 222 |  | [4] | Liu T G, Xia S, Bai Q, et al.Morphological characteristics and size distributions of three-dimensional grains and grain boundaries in 316L stainless steel[J]. Acta Metall. Sin., 2018, 54: 868(刘廷光, 夏爽, 白琴等. 316L不锈钢的三维晶粒与晶界形貌特征及尺寸分布[J]. 金属学报, 2018, 54: 868) |  | [5] | Ullah A, Liu G Q, Luan J H, et al.Three-dimensional visualization and quantitative characterization of grains in polycrystalline iron[J]. Mater. Charact., 2014, 91: 65 |  | [6] | Gottstein G, Shvindlerman L S.Grain boundary junction engineering[J]. Scr. Mater., 2006, 54: 1065 |  | [7] | Frary M, Schuh C A.Connectivity and percolation behaviour of grain boundary networks in three dimensions[J]. Philos. Mag., 2005, 85: 1123 |  | [8] | Gertsman V Y.Coincidence site lattice theory of multicrystalline ensembles[J]. Acta Crystallogr., 2001, 57A: 649 |  | [9] | Li S F, Mason J K, Lind J, et al.Quadruple nodes and grain boundary connectivity in three dimensions[J]. Acta Mater., 2014, 64: 220 |  | [10] | Reed B W, Minich R W, Rudd R E, et al.The structure of the cubic coincident site lattice rotation group[J]. Acta Crystallogr., 2004, 60A: 263 |  | [11] | Randle V.The Role of the Coincidence Site Lattice in Grain Boundary Engineering [M]. London: Cambridge University Press, 1996: 1 |  | [12] | Liu T G, Xia S, Bai Q, et al.Three-dimensional study of grain boundary engineering effects on intergranular stress corrosion cracking of 316 stainless steel in high temperature water[J]. J. Nucl. Mater., 2018, 498: 290 |  | [13] | Hu C L, Xia S, Li H, et al.Effect of grain boundary network on the intergranular stress corrosion cracking of 304 stainless steel[J]. Acta Metall. Sin., 2011, 47: 939(胡长亮, 夏爽, 李慧等. 晶界网络特征对304不锈钢晶间应力腐蚀开裂的影响[J]. 金属学报, 2011, 47: 939) |  | [14] | Zhang Z L, Xia S, Cao W, et al.Effects of grain boundary character on intergranular stress corrosion cracking initiation in 316 stainless steel[J]. Acta Metall. Sin., 2016, 52: 313(张子龙, 夏爽, 曹伟等. 晶界特征对316不锈钢沿晶应力腐蚀开裂裂纹萌生的影响[J]. 金属学报, 2016, 52: 313) |  | [15] | Gertsman V Y, Bruemmer S M.Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys[J]. Acta Mater., 2001, 49: 1589 |  | [16] | Shi F, Tian P C, Jia N, et al.Improving intergranular corrosion resistance in a nickel-free and manganese-bearing high-nitrogen austenitic stainless steel through grain boundary character distribution optimization[J]. Corros. Sci., 2016, 107: 49 |  | [17] | Hu C L, Xi S, Li H, et al.Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control[J]. Corros. Sci., 2011, 53: 1880 |  | [18] | Kobayashi S, Kobayashi R, Watanabe T.Control of grain boundary connectivity based on fractal analysis for improvement of intergranular corrosion resistance in SUS316L austenitic stainless steel[J]. Acta Mater., 2016, 102: 397 |  | [19] | Jothi S, Merzlikin S V, Croft T N, et al.An investigation of micro-mechanisms in hydrogen induced cracking in nickel-based superalloy 718[J]. J. Alloys Compd., 2016, 664: 664 |  | [20] | Xia S, Li H, Liu T G, et al.Appling grain boundary engineering to Alloy 690 tube for enhancing intergranular corrosion resistance[J]. J. Nucl. Mater., 2011, 416: 303 |  | [21] | Deepak K, Mandal S, Athreya C N, et al.Implication of grain boundary engineering on high temperature hot corrosion of alloy 617[J]. Corros. Sci., 2016, 106: 293 |  | [22] | Li H, Xia S, Zhou B X, et al.The dependence of carbide morphology on grain boundary character in the highly twinned Alloy 690[J]. J. Nucl. Mater., 2010, 399: 108 |  | [23] | Watanabe T.An approach to grain boundary design for strong and ductile polycrystals[J]. Res. Mech., 1984, 11: 47 |  | [24] | Lin P, Palumbo G, Erb U, et al.Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600[J]. Scr. Metall. Mater., 1995, 33: 1387 |  | [25] | Lehockey E M, Limoges D, Palumbo G, et al.On improving the corrosion and growth resistance of positive Pb-acid battery grids by grain boundary engineering[J]. J. Power Sources, 1999, 78: 79 |  | [26] | Watanabe T.Grain boundary engineering: Historical perspective and future prospects[J]. J. Mater. Sci., 2011, 46: 4095 |  | [27] | Randle V.Grain boundary engineering: An overview after 25 years[J]. Mater. Sci. Technol., 2010, 26: 253 |  | [28] | Michiuchi M, Kokawa H, Wang Z J, et al.Twin-induced grain boundary engineering for 316 austenitic stainless steel[J]. Acta Mater., 2006, 54: 5179 |  | [29] | Randle V.Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials[J]. Acta Mater., 1999, 47: 4187 |  | [30] | Randle V, Coleman M.A study of low-strain and medium-strain grain boundary engineering[J]. Acta Mater., 2009, 57: 3410 |  | [31] | Liu T G, Xia S, Li H, et al.Effect of the pre-existing carbides on the grain boundary network during grain boundary engineering in a nickel based alloy[J]. Mater. Charact., 2014, 91: 89 |  | [32] | Liu T G, Xia S, Shoji T, et al.The topology of three-dimensional grain boundary network and its influence on stress corrosion crack propagation characteristics in austenitic stainless steel in a simulated BWR environment[J]. Corros. Sci., 2017, 129: 161 |  | [33] | Groeber M A, Jackson M A.DREAM.3D: A digital representation environment for the analysis of microstructure in 3D[J]. Integr. Mater. Manuf. Innov., 2014, 3: 5 |  | [34] | Brandon D G.The structure of high-angle grain boundaries[J]. Acta Metall., 1966, 14: 1479 |  | [35] | Ankem S, Pande C S, Ovid'ko I, et al. Science and Technology of Interfaces[M]. Hoboken: John Wiley & Sons, Inc., 2002: 387 |  | [36] | Marrow T J, Babout L, Jivkov A P, et al.Three dimensional observations and modelling of intergranular stress corrosion cracking in austenitic stainless steel[J]. J. Nucl. Mater., 2006, 352: 62 | 
 |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |