|
|
国产核电安全端异种金属焊接件的微观结构及局部性能研究 |
明洪亮1,2,张志明1,王俭秋1( ),韩恩厚1,苏明星3 |
1 中国科学院金属研究所核用材料与安全评价重点实验室, 辽宁省核电材料安全与评价技术重点实验室 沈阳 110016 2 中国科学院大学 北京 100049 3 上海核电装备焊接及检测工程技术研究中心 上海 201306 |
|
Microstructure and Local Properties of a Domestic Safe-End Dissimilar Metal Weld Joint by Using Hot-Wire GTAW |
Hongliang MING1,2,Zhiming ZHANG1,Jianqiu WANG1( ),En-Hou HAN1,Mingxing SU3 |
1 Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Shanghai Research Center for Weld and Detection Engineering Technique of Nuclear Equipment, Shanghai 201306, China |
引用本文:
明洪亮,张志明,王俭秋,韩恩厚,苏明星. 国产核电安全端异种金属焊接件的微观结构及局部性能研究[J]. 金属学报, 2017, 53(1): 57-69.
Hongliang MING,
Zhiming ZHANG,
Jianqiu WANG,
En-Hou HAN,
Mingxing SU.
Microstructure and Local Properties of a Domestic Safe-End Dissimilar Metal Weld Joint by Using Hot-Wire GTAW[J]. Acta Metall Sin, 2017, 53(1): 57-69.
[1] | Li G F, Yang W.Cracking of dissimilar metal welds in nuclear power plants and methods to evaluate its susceptibility to stress corrosion cracking[J]. Nucl. Saf., 2003, (2): 37 | [1] | (李光福, 杨武. 核电站异材焊接件的破裂问题与应力腐蚀评价方法[J]. 核安全, 2003, (2): 37) | [2] | Wang H T, Wang G Z, Xuan F Z, et al.Local mechanical properties of a dissimilar metal welded joint in nuclear powersystems[J]. Mater. Sci. Eng., 2013, A568: 108 | [3] | Lu Z P, Shoji T, Yamazaki S, et al.Characterization of microstructure, local deformation and microchemistry in Alloy 600 heat-affected zone and stress corrosion cracking in high temperature water[J]. Corros. Sci., 2012, 58: 211 | [4] | Hou J, Peng Q J, Takeda Y, et al.Microstructure and stress corrosion cracking of the fusion boundary region in an Alloy 182-A533B low alloy steel dissimilar weld joint[J]. Corros. Sci., 2010, 52: 3949 | [5] | Hou J, Shoji T, Lu Z P, et al.Residual strain measurement and grain boundary characterization in the heat-affected zone of a weld joint between Alloy 690TT and Alloy 52[J]. J. Nucl. Mater., 2010, 397: 109 | [6] | Ming H L, Zhang Z M, Wang J Q, et al.Microstructural characterization of an SA508-309L/308L-316L domestic dissimilar metal welded safe-end joint[J]. Mater. Charact., 2014, 97: 101 | [7] | Wang S Y, Ding J, Ming H L, et al.Characterization of low alloy ferritic steel-Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET[J]. Mater. Charact., 2015, 100: 50 | [8] | Hou J, Peng Q J, Takeda Y, et al.Microstructure and mechanical property of the fusion boundary region in an alloy 182-low alloy steel dissimilar weld joint[J]. J. Mater. Sci., 2010, 45: 5332 | [9] | Chung W C, Huang J Y, Tsay L W, et al.Microstructure and stress corrosion cracking behavior of the weld metal in alloy 52-A508 dissimilar welds[J]. Mater. Trans., 2011, 52: 12 | [10] | Hou J, Peng Q J, Shoji T, et al.Study of microstructure and stress corrosion cracking behavior in welding transition zone of Ni-based alloys[J]. Acta Metall. Sin., 2010, 46: 1258 | [10] | (侯娟, 彭群家, 庄子哲雄等. 镍基合金焊接过渡区微观结构及应力腐蚀行为研究[J]. 金属学报, 2010, 46: 1258) | [11] | Ding J, Zhang Z M, Wang J Q, et al.Micro-characterization of dissimilar metal weld joint for connecting pipe-nozzle to safe-end in generation III nuclear power plant[J]. Acta Metall. Sin., 2015, 51: 425 | [11] | (丁杰, 张志明, 王俭秋等. 三代核电接管安全端异种金属焊接接头的显微表征[J]. 金属学报, 2015, 51: 425) | [12] | Ming H L, Zhang Z M, Xiu P Y, et al.Microstructure, Residual strain and stress corrosion cracking behavior in 316L heat-affected zone[J]. Acta Metall. Sin.(Engl. Lett.), 2016, 29: 848 | [13] | Li G F, Congleton J.Stress corrosion cracking of a low alloy steel to stainless steel transition weld in PWR primary waters at 292 ℃[J]. Corros. Sci., 2000, 42: 1005 | [14] | Li G F, Li G J, Fang K W, et al.Stress corrosion cracking behavior of dissimilar metal weld A508/52M/316L in high temperature water environment[J]. Acta Metall. Sin., 2011, 47: 797 | [14] | (李光福, 李冠军, 方可伟等. 异材焊接件A508/52M/316L在高温水环境中的应力腐蚀破裂[J]. 金属学报, 2011, 47: 797) | [15] | Deng D, Murakawa H.Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J]. Comput. Mater. Sci., 2006, 37: 269 | [16] | Lim Y S, Kim H P, Cho H D, et al.Microscopic examination of an alloy 600/182 weld[J]. Mater. Charact., 2009, 60: 1496 | [17] | Ming H L, Zhu R L, Zhang Z M, et al.Microstructure, local mechanical properties and stress corrosion cracking susceptibility of an SA508-52M-316LN safe-end dissimilar metal weld joint by GTAW[J]. Mater. Sci. Eng., 2016, A669: 279 | [18] | Nelson T W, Lippold J C, Mills M J.Nature and evolution of the fusion boundary in ferritic-austenitic dissimilar metal welds-Part 2: on-cooling transformations[J]. Weld. J., 2000, 79: 267s | [19] | Wu Y, Patchett B M.Formation of crack-susceptible structures of weld overlay of corrosion resistant alloys[J]. Mater. Perform.: Sulphur Energy, 1992, 32: 83 | [20] | Yoo S C, Choi K J, Bahn C B, et al.Effects of thermal aging on the microstructure of Type-II boundaries in dissimilar metal weld joints[J]. J. Nucl. Mater., 2015, 459: 5 | [21] | Kou S.Welding Metallurgy[M]. 2nd Ed., Hoboken, New Jersey: John Wiley & Sons Inc., 2003: 170 | [22] | Srinivasan P B, Muthupandi V, Dietzel W, et al.An assessment of impact strength and corrosion behaviour of shielded metal arc welded dissimilar weldments between UNS 31803 and IS 2062 steels[J]. Mater. Des., 2006, 27: 182 | [23] | Qiao D X, Zhang W, Pan T Y, et al.Evaluation of residual plastic strain distribution in dissimilar metal weld by hardness mapping[J]. Sci. Technol. Weld. Joi., 2013, 18: 624 | [24] | Bhaduri A K, Venkadesan S, Rodriguez P, et al.Transition metal joints for steam generators-an overview [J]. Int. J. Press. Vessels Pip., 1994, 58: 251 | [25] | Kuniya J, Masaoka I, Sasaki R.Effect of cold work on the stress corrosion cracking of nonsensitized AISI 304 stainless steel in high-temperature oxygenated water[J]. Corrosion, 1988, 44: 21 | [26] | Fang H Y.Welding Structural [M]. Beijing: Mechanical Industry Press, 2008: 56 | [26] | (方洪渊. 焊接结构学 [M]. 北京: 机械工业出版社, 2008: 56) | [27] | Zhang L T, Wang J Q.Stress corrosion crack propagation behavior of domestic forged nuclear grade 316L stainless steel in high temperature and high pressure water[J]. Acta Metall. Sin., 2013, 49: 911 | [27] | (张利涛, 王俭秋. 国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为[J]. 金属学报, 2013, 49: 911) | [28] | Andresen P L.Suzhou international seminar on welding and non-destructive examination in nuclear power plants, Suzhou, China, 2009 (CD-ROM) | [29] | Zhang L T, Wang J Q.Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment[J]. J. Nucl. Mater., 2014, 446: 15 | [30] | Hu C L, Xia S, Li H, et al.Effect of grain boundary network on the intergranular stress corrosion cracking of 304 stainless steel[J]. Acta Metall. Sin., 2011, 47: 939 | [30] | (胡长亮, 夏爽, 李慧等. 晶界网络特征对304不锈钢晶间应力腐蚀开裂的影响[J]. 金属学报, 2011, 47: 939) | [31] | Gertsman V Y, Bruemmer S M.Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys[J]. Acta Mater., 2001, 49: 1589 | [32] | Tan L, Allen T R, Busby J T.Grain boundary engineering for structure materials of nuclear reactors[J]. J. Nucl. Mater., 2013, 441: 661 | [33] | West E A, Was G S.IGSCC of grain boundary engineered 316L and 690 in supercritical water[J]. J. Nucl. Mater., 2009, 392: 264 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|