Please wait a minute...
金属学报  2020, Vol. 56 Issue (6): 840-848    DOI: 10.11900/0412.1961.2019.00298
  本期目录 | 过刊浏览 |
核电站DMWJ中材料拘束的影响与优化
杨杰(), 王雷
上海理工大学能源与动力工程学院上海市动力工程多相流动与传热重点实验室 上海 200093
Effect and Optimal Design of the Material Constraint in the DMWJ of Nuclear Power Plants
YANG Jie(), WANG Lei
Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
全文: PDF(2772 KB)   HTML
摘要: 

选用新一代核电安全端52M镍基合金异种金属焊接接头(DMWJ)为研究对象,以热影响区中危险位置为初始裂纹所在位置,系统研究了热影响区(HAZ)、熔合区(FZ)和近界面区(NIZ)材料拘束对DMWJ断裂行为的影响,并在此基础上对DMWJ各区域的材料拘束进行优化设计。结果表明,对于热影响区裂纹,当单独改变裂纹所在HAZ区域的强度时,J-R阻力曲线随着HAZ区域材料拘束失配系数(Ms)的增加而单调增加;当单独改变裂纹周边FZ或NIZ区域的强度时,J-R阻力曲线随着FZ或NIZ区域Ms的增加先增加后降低再不变。材料拘束优化后,DMWJ的J-R阻力曲线均明显高于实际DMWJ的J-R阻力曲线,同时改变3个区域的材料拘束失配系数,当Ms (HAZ):Ms (FZ):Ms (NIZ)=2:1.4:0.84时,得到了几倍于目前DMWJ的J-R阻力曲线。

关键词 材料拘束异种金属焊接接头断裂行为优化设计    
Abstract

The material constraint is an important factor affecting the fracture behavior of dissimilar metal welded joint (DMWJ). For accurately design, manufacture and structure integrity assessment, is necessary to clarify the influence of material constraint on the DMWJ. However, there is still a lack of a systematic research on the influence of material constraint on the fracture behavior of the DMWJ in the current nuclear power plants, and how to improve the fracture resistance of the DMWJ by the optimal design of the material constraint should be considered. In this work, a 52M nickel-based alloy DMWJ in nuclear power plants was selected, the initial crack which located in the heat affected zone (HAZ) was manufactured, and the fracture behaviors of the DMWJ under different material constraints of HAZ, fusion zone (FZ) and near interface zone (NIZ) were studied. In addition, the optimal design of the material constraint was investigated. The results show that for the HAZ crack, the J-resistance curves increase monotonously with increasing the strength of HAZ where the crack is located in. And the J-resistance curves increase firstly, then decrease and remain steady with increasing the strength of FZ and NIZ where the crack is nearby. The optimized DMWJs have higher J-resistance curves, and when Ms (HAZ): Ms (FZ):Ms (NIZ)=2:1.4:0.84, the optimized DMWJ has the highest J-resistance curve which is several times of the current J-resistance curve.

Key wordsmaterial constraint    dissimilar metal welded joint    fracture behavior    optimal design
收稿日期: 2019-09-10     
ZTFLH:  TH114  
基金资助:国家自然科学基金项目(51975378);国家自然科学基金项目(51605292)
通讯作者: 杨杰     E-mail: yangjie@usst.edu.cn
Corresponding author: YANG Jie     E-mail: yangjie@usst.edu.cn
作者简介: 杨 杰,男,1987年生,副教授,博士

引用本文:

杨杰, 王雷. 核电站DMWJ中材料拘束的影响与优化[J]. 金属学报, 2020, 56(6): 840-848.
Jie YANG, Lei WANG. Effect and Optimal Design of the Material Constraint in the DMWJ of Nuclear Power Plants. Acta Metall Sin, 2020, 56(6): 840-848.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2019.00298      或      https://www.ams.org.cn/CN/Y2020/V56/I6/840

图1  异种金属焊接接头与核电压力容器接管嘴及安全端的连接示意图
图2  异种金属焊接接头及A508/52Mb界面附近子区域的细分
MaterialCSPSiMnNiCrMoCuAlTiCoFeNb
A5080.2000.0010.0050.201.360.960.170.47----Bal.-
316L0.0250.0010.0050.521.7311.6917.892.43----Bal.-
52Mb0.020<0.0010.0030.140.2560.3928.910.010.010.670.560.019.03<0.01
52Mw0.0250.0010.0040.180.2458.0029.180.010.020.750.530.0210.23<0.01
表1  异种金属焊接接头4种材料的化学成分[35] (mass fraction / %)
图3  异种金属焊接接头中所有材料及各子区域的真应力-真应变曲线
图4  SENB单边缺口弯曲试样的取样与尺寸示意图
Materialq1q2q3εΝSNfNf0fCfF
A5081.512.250.30.10.0020.000080.040.25
316L1.5Variable2.250.30.10.0020.0000010.040.25
52Mb1.5Variable2.250.30.10.0020.0000010.040.25
52Mw1.512.250.30.10.0020.000150.040.25
HAZ1.512.250.30.10.0020.000150.040.25
FZ1.512.250.30.10.0080.000800.010.15
NIZ1.512.250.30.10.0020.000040.040.25
表2  不同材料的Gurson-Tvergaard-Needleman (GTN)损伤参数[36]
图5  SENB单边缺口弯曲试样的整体网格与裂尖局部网格
图6  HAZ区域材料拘束改变对J-R阻力曲线与裂尖扩展路径的影响
图7  FZ区域材料拘束改变对J-R阻力曲线与裂尖扩展路径的影响
图8  材料拘束失配系数Ms=0.5时的裂纹扩展路径
图9  NIZ区域材料拘束改变对J-R阻力曲线与裂尖扩展路径的影响
图10  Ms=0.6时裂纹的扩展路径
图11  不同材料拘束优化设计所得到的J-R阻力曲线
[1] Li J, Wu X Q, Han E H, et al. A review of corrosion failure of welded structural metallic materials for light water reactor plant [J]. Corros. Sci. Prot. Technol., 2014, 26: 1
[1] 李 江, 吴欣强, 韩恩厚等. 核电焊接结构材料腐蚀失效研究现状与进展 [J]. 腐蚀科学与防护技术, 2014, 26: 1
[2] Celin R, Tehovnik F. Degradation of a Ni-Cr-Fe alloy in a pressurised-water nuclear power plant [J]. Mater. Technol., 2011, 45: 151
[3] Ogawa T, Itatani M, Saito T, et al. Fracture assessment for a dissimilar metal weld of low alloy steel and Ni-base alloy [J]. Int. J. Press. Vessels Pip., 2012, 90-91: 61
[4] Ming H L, Zhang Z M, Wang J Q, et al. Microstructure of a domestically fabricated dissimilar metal weld joint (SA508-52M-309L-CF8A) in nuclear power plant [J]. Mater. Charact., 2019, 148: 100
doi: 10.1016/j.matchar.2018.12.011
[5] Ming H L, Zhang Z M, Wang J Q, et al. Microstructure of a safe-end dissimilar metal weld joint (SA508-52-316L) prepared by narrow-gap GTAW [J]. Mater. Charact., 2017, 123: 233
doi: 10.1016/j.matchar.2016.11.029
[6] Ming H L, Zhu R L, Zhang Z M, et al. Microstructure, local mechanical properties and stress corrosion cracking susceptibility of an SA508-52M-316LN safe-end dissimilar metal weld joint by GTAW [J]. Mater. Sci. Eng., 2016, A669: 279
[7] Ming H L, Zhang Z M, Wang J Q, et al. Microstructure and local properties of a domestic safe-end dissimilar metal weld joint by using hot-wire GTAW [J]. Acta Metall. Sin., 2017, 53: 57
doi: 10.11900/0412.1961.2016.00135
[7] 明洪亮, 张志明, 王俭秋等. 国产核电安全端异种金属焊接件的微观结构及局部性能研究 [J]. 金属学报, 2017, 53: 57
doi: 10.11900/0412.1961.2016.00135
[8] Dong L J, Peng Q J, Han E H, et al. Microstructure and intergranular stress corrosion cracking susceptibility of a SA508-52M-316L dissimilar metal weld joint in primary water [J]. J. Mater. Sci. Technol., 2018, 34: 1281
doi: 10.1016/j.jmst.2017.11.051
[9] Dong L J, Peng Q J, Xue H, et al. Correlation of microstructure and stress corrosion cracking initiation behaviour of the fusion boundary region in a SA508 Cl. 3-Alloy 52M dissimilar weld joint in primary pressurized water reactor environment [J]. Corros. Sci., 2018, 132: 9
[10] Wang H T, Wang G Z, Xuan F Z, et al. Local mechanical properties of a dissimilar metal welded joint in nuclear power systems [J]. Mater. Sci. Eng., 2013, A568: 108
[11] Wang H T, Wang G Z, Xuan F Z, et al. Fracture mechanism of a dissimilar metal welded joint in nuclear power plant [J]. Eng. Fail. Anal., 2013, 28: 134
doi: 10.1016/j.engfailanal.2012.10.005
[12] Blouin A, Chapuliot S, Marie S, et al. Brittle fracture analysis of dissimilar metal welds [J]. Eng. Fract. Mech., 2014, 131: 58
doi: 10.1016/j.engfracmech.2014.07.005
[13] Chen Z R, Lu Y H. TEM observation of martensite layer at the weld interface of an A508III to inconel 82 dissimilar metal weld joint [J]. Metall. Mater. Trans., 2015, 46A: 5494
[14] Chen Z R, Lu Y H, Ding X F, et al. Microstructural and hardness investigations on a dissimilar metal weld between low alloy steel and Alloy 82 weld metal [J]. Mater. Charact., 2016, 121: 166
[15] Jahanzeb N, Shin J H, Singh J, et al. Effect of microstructure on the hardness heterogeneity of dissimilar metal joints between 316L stainless steel and SS400 steel [J]. Mater. Sci. Eng., 2017, A700: 338
[16] Wang H T, Wang G Z, Xuan F Z, et al. An experimental investigation of local fracture resistance and crack growth paths in a dissimilar metal welded joint [J]. Mater. Des., 2013, 44: 179
[17] Samal M K, Seidenfuss M, Roos E, et al. Investigation of failure behavior of ferritic-austenitic type of dissimilar steel welded joints [J]. Eng. Fail. Anal., 2011, 18: 999
doi: 10.1016/j.engfailanal.2010.12.011
[18] Fan K, Wang G Z, Xuan F Z, et al. Local fracture resistance behavior of interface regions in a dissimilar metal welded joint [J]. Eng. Fract. Mech., 2015, 136: 279
doi: 10.1016/j.engfracmech.2015.02.007
[19] Chhibber R, Arora N, Gupta S R, et al. Use of bimetallic welds in nuclear reactors: Associated problems and structural integrity assessment issues [J]. Proc. Inst. Mech. Eng., 2006, 220C: 1121
[20] Laukkanen A, Nevasmaa P, Ehrnstén U, et al. Characteristics relevant to ductile failure of bimetallic welds and evaluation of transferability of fracture properties [J]. Nucl. Eng. Des., 2007, 237: 1
doi: 10.1016/j.nucengdes.2006.03.022
[21] Shang Y B, Shi H J, Wang Z X, et al. In-situ SEM study of short fatigue crack propagation behavior in a dissimilar metal welded joint of nuclear power plant [J]. Mater. Des., 2015, 88: 598
[22] Kim Y J, Kim J S, Cho S M, et al. 3-D constraint effects on J testing and crack tip constraint in M(T), SE(B), SE(T) and C(T) specimens: Numerical study [J]. Eng. Fract. Mech., 2004, 71: 1203
[23] Østby E, Thaulow C, Zhang Z L. Numerical simulations of specimen size and mismatch effects in ductile crack growth-Part I: Tearing resistance and crack growth paths [J]. Eng. Fract. Mech., 2007, 74: 1770
[24] Østby E, Thaulow C, Zhang Z L. Numerical simulations of specimen size and mismatch effects in ductile crack growth-Part II: Near-tip stress fields [J]. Eng. Fract. Mech., 2007, 74: 1793
[25] Yang J, Wang G Z, Xuan F Z, et al. An experimental investigation of in-plane constraint effect on local fracture resistance of a dissimilar metal welded joint [J]. Mater. Des., 2014, 53: 611
[26] Yang J, Wang G Z, Xuan F Z, et al. Out-of-plane constraint effect on local fracture resistance of a dissimilar metal welded joint [J]. Mater. Des., 2014, 55: 542
doi: 10.1016/j.matdes.2013.10.034
[27] Yang J, Wang L. Fracture mechanism of cracks in the weakest location of dissimilar metal welded joint under the interaction effect of in-plane and out-of-plane constraints [J]. Eng. Fract. Mech., 2018, 192: 12
[28] Zhang Z L, Hauge M, Thaulow C. Two-parameter characterization of the near-tip stress fields for a bi-material elastic-plastic interface crack [J]. Int. J. Fract., 1996, 79: 65
[29] Betegón C, Peñuelas I. A constraint based parameter for quantifying the crack tip stress fields in welded joints [J]. Eng. Fract. Mech., 2006, 73: 1865
doi: 10.1016/j.engfracmech.2006.02.012
[30] Xue H, Sun J W. Study on micro region of crack tip of welded joints under different matches of yield stress [J]. Hot Work. Technol., 2016, 45(21): 239
[30] 薛 河, 孙剑伟. 不同屈服强度匹配下焊接接头裂纹尖端微观区域的研究 [J]. 热加工工艺, 2016, 45(21): 239
[31] Rakin M, Medjo B, Gubeljak N, et al. Micromechanical assessment of mismatch effects on fracture of high-strength low alloyed steel welded joints [J]. Eng. Fract. Mech., 2013, 109: 221
doi: 10.1016/j.engfracmech.2013.06.010
[32] Yang J, Wang G Z, Xuan F Z, et al. Unified correlation of in-plane and out-of-plane constraint with fracture resistance of a dissimilar metal welded joint [J]. Eng. Fract. Mech., 2014, 115: 296
doi: 10.1016/j.engfracmech.2013.11.018
[33] Yang J, Wang L. Effect range of the material constraint-I. Center crack [J]. Materials (Basel), 2019, 12(1): E67
[34] Dai Y, Yang J, Wang L. Effect range of the material constraint-II. Interface crack [J]. Metals (Basel), 2019, 9: 696
doi: 10.3390/met9060696
[35] Wang H T, Wang G Z, Xuan F Z, et al. Local mechanical properties and Microstructures of Alloy52M dissimilar metal welded joint between A508 ferritic steel and 316L stainless steel [J]. Adv. Mater. Res., 2012, 509: 103
[36] Yang J. Micromechanical analysis of in-plane constraint effect on local fracture behavior of cracks in the weakest locations of dissimilar metal welded joint [J]. Acta Metall. Sin. (Engl. Lett., 2017, 30: 840
[37] Linder C, Armero F. Finite elements with embedded branching [J]. Finite Elem. Anal. Des., 2009, 45: 280
doi: 10.1016/j.finel.2008.10.012
[38] Lloberas-Valls O, Huespe A E, Oliver J, et al. Strain injection techniques in dynamic fracture modeling [J]. Comput. Meth. Appl. Mech. Eng., 2016, 308: 499
[1] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[2] 冯祥利,王磊,刘杨. Q460钢焊接接头组织及动态断裂行为的研究*[J]. 金属学报, 2016, 52(7): 787-796.
[3] 许志武,马志鹏,闫久春,张誉喾,张旭昀. Ti/Al异种合金接头原位拉伸应变场及断裂行为的研究*[J]. 金属学报, 2016, 52(11): 1403-1412.
[4] 张金钰, 刘刚, 孙军. 纳米金属多层膜的变形与断裂行为及其尺寸效应*[J]. 金属学报, 2014, 50(2): 169-182.
[5] 刘东升 程丙贵 陈圆圆. 低C含Cu NV-F690特厚钢板的精细组织和强韧性[J]. 金属学报, 2012, 48(3): 334-342.
[6] 李时磊 王西涛 王艳丽 李树肖. 热老化对Z3CN20-09M不锈钢微区力学性能和冲击断裂行为的影响[J]. 金属学报, 2011, 47(6): 751-756.
[7] 刘东升 程丙贵 罗咪. F460高强韧厚船板焊接热影响区的组织和冲击断裂行为[J]. 金属学报, 2011, 47(10): 1233-1240.
[8] 寇东鹏 虞吉林. 双重孔径泡沫金属材料的强度和热性能多目标优化设计[J]. 金属学报, 2010, 46(1): 104-110.
[9] 王刚; 沈军; 孙剑飞; Z.H.Stachurski; 周彼德 . Zr41.25Ti13.75Ni10Cu12.5Be22.5块体非晶合金的拉伸断裂行为[J]. 金属学报, 2005, 41(3): 291-296 .
[10] 惠卫军; 董瀚; 翁宇庆; 时捷; 聂义宏; 褚作明; 陈蕴博 . 超细晶粒高强度钢的延迟断裂行为[J]. 金属学报, 2004, 40(6): 561-.
[11] 缪宗华; 李正红 . 用改进单纯形法优化钢的硬度与强度换算公式[J]. 金属学报, 2001, 37(5): 543-546 .
[12] 赵巍; 田勇 . 方坯结晶器铜管三维温度场与热应力的分析[J]. 金属学报, 2000, 36(4): 407-410 .
[13] 林肇琦; 茹红强 . 氢对Al-Li合金8091-T6疲劳寿命和断裂行为的影响[J]. 金属学报, 1999, 35(3): 257-260 .
[14] 蒋晓军;李依依;师昌绪. 微量Ag对自然时效态Al-Li-Cu-Mg-Zr合金低温拉伸行为的影响[J]. 金属学报, 1993, 29(8): 37-43.
[15] 蒋晓军;姚大平;李依依. 一种Al-Li-Zn-Zr合金在室温与低温下的反常拉伸断裂行为[J]. 金属学报, 1991, 27(1): 39-43.