Please wait a minute...
金属学报  2015, Vol. 51 Issue (9): 1101-1110    DOI: 10.11900/0412.1961.2015.00039
  本期目录 | 过刊浏览 |
高压煤制气环境下X80钢及热影响区的氢渗透参数研究
张体明,王勇,赵卫民(),唐秀艳,杜天海,杨敏
HYDROGEN PERMEATION PARAMETERS OF X80 STEEL AND WELDING HAZ UNDER HIGH PRESSURE COAL GAS ENVIRONMENT
Timing ZHANG,Yong WANG,Weimin ZHAO(),Xiuyan TANG,Tianhai DU,Min YANG
College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao 266580
引用本文:

张体明,王勇,赵卫民,唐秀艳,杜天海,杨敏. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J]. 金属学报, 2015, 51(9): 1101-1110.
Timing ZHANG, Yong WANG, Weimin ZHAO, Xiuyan TANG, Tianhai DU, Min YANG. HYDROGEN PERMEATION PARAMETERS OF X80 STEEL AND WELDING HAZ UNDER HIGH PRESSURE COAL GAS ENVIRONMENT[J]. Acta Metall Sin, 2015, 51(9): 1101-1110.

全文: PDF(9595 KB)   HTML
摘要: 

采用焊接热模拟技术制备了X80管线钢焊接接头热影响区不同亚区的试样, 通过高压含氢煤制气环境下的氢渗透实验考察了X80钢及热影响区中的氢渗透行为, 并计算了相应的氢渗透参数. 结果发现, 与X80钢相比, 热影响区的氢扩散系数有了不同程度的增加, 且随峰值温度的升高而增加, 吸附氢浓度、氢溶解度和氢陷阱密度则呈现了相反的规律. 结合显微组织分析发现, 大角度晶界含量、位错密度和晶界平直度为影响氢渗透参数的主要因素. 过热粗晶区具有最高的氢扩散系数, 主要是由于该区峰值温度最高, 奥氏体晶粒发生严重长大, 晶界平直度增加, 冷却后生成了粗大的贝氏体铁素体, 大角度晶界含量显著减少, 位错密度较X80钢也有所降低, 对氢的捕获作用减弱.

关键词 煤制气X80管线钢热影响区显微组织氢渗透    
Abstract

Hydrogen gas is usually included in coal gas environment, so hydrogen induced permeation would happen to pipeline, especially in welding heat affected zone (HAZ). Hydrogen permeation process in pipeline is the preconditions for the following hydrogen embrittlement failure. With the development of coal gas industry, the basic research to the hydrogen permeation behavior in pipeline under coal gas circumstance is still unfortunately lack and urgently needed to supplement. In this work, X80 pipeline steel was used, and the HAZ samples, including intercritical heat affected zone (ICHAZ), fine grained heat affected zone (FGHAZ) and coarse grained heat affected zone (CGHAZ), were experimentally simulated using a Gleeble 3500 simulator. Next, hydrogen permeation tests were conducted on X80 pipeline steel and HAZs in coal gas environment. Calculated results indicated that the hydrogen diffusion coefficient increased with the rise of peak temperature in HAZs, but it was opposite to other parameters, such as sub-surface hydrogen concentration, hydrogen solubility and hydrogen trap density. The mechanism of the difference in HAZ hydrogen permeation parameters was analyzed combined with OM, EBSD and TEM analysis. It turned out that the content of large-angle grain boundaries, the grain boundary straightness and dislocation density were the main factors, where the large-angle grain boundaries and dislocations could dramatically arrest hydrogen atoms while the straight grain boundaries may act as hydrogen diffusion path. For FGHAZ, the straight grain boundary and low dislocation density compared with matrix played the predominant role in hydrogen diffusion process, and thus the hydrogen diffusion coefficient increased compared with steel substrate. For ICHAZ and CGHAZ, the decrease of large-angle grain boundaries and dislocation density acted as the main factor, especially for CGHAZ, the microstructures was mainly composed of tabular bainite ferrite (BF) with large grain size and straight grain boundaries because of the highest peak temperature, and the content of large-angle grain boundaries decreased obviously. In comparation with other regions, CGHAZ had the highest hydrogen diffusion coefficient and the lowest hydrogen trap density and hydrogen solubility.

Key wordscoal gas    X80 pipeline steel    heat affected zone (HAZ)    microstructure    hydrogen permeation
    
基金资助:* 中央高校基本科研业务费专项资金项目14CX05020A和14CX06120A, 以及山东省自然科学基金项目ZR2013EEL023资助
图1  焊接热模拟过程热循环曲线
图2  高压氢渗透装置图
图3  X80钢及热影响区各亚区的显微组织
图4  X80钢及HAZ各亚区的氢渗透曲线
Sample i / (10-6 Acm-2) D / (10-6 cm2s-1) C0 / (10-6 molcm-3) S / (10-10 molcm-3Pa-1/2) NT / (10-6 molcm-3)
X80 0.292 3.302 0.183 3.734 2.304
ICHAZ 0.313 4.138 0.157 3.196 1.566
FGHAZ 0.329 4.990 0.137 2.785 1.126
CGHAZ 0.353 5.477 0.133 2.722 0.992
表1  X80钢及HAZ各亚区的氢渗透参数
图5  X80钢及HAZ各亚区氢渗透电流暂态的Fourier法拟合曲线
图6  X80钢及HAZ各亚区的bcc相取向图和反极图
图7  X80钢及HAZ各亚区的晶界角度分布图
图8  X80钢及HAZ各亚区的TEM像
[1] Nie W J, Shang C J, You Y, Zhang X B, Sundarese S. Acta Metall Sin, 2012; 48: 797 (聂文金, 尚成嘉, 由 洋, 张晓兵, Sundarese S. 金属学报, 2012; 48: 797)
[2] Meliani M H, Azari Z, Matvienko Y G, Pluvinage G. Proc Eng, 2011; 10: 942
[3] Somerday B P, Sofronis P, Nibur K A, Marchi C S, Kirchheim R. Acta Mater, 2013; 61: 6153
[4] Zhu M, Liu Z Y, Du C W, Li X G, Li J K, Li Q, Jia J H. Acta Metall Sin, 2013; 49: 1590 (朱 敏, 刘智勇, 杜翠薇, 李晓刚, 李建宽, 李 琼, 贾静焕. 金属学报, 2013; 49: 1590)
[5] Li X F, Wang Y F, Zhang P, Li B, Song X L, Chen J. Mater Sci Eng, 2014; A616: 116
[6] Zhu X, Li W, Hsu T Y, Zhou S, Wang L, Jin X J. Scr Mater, 2015; 97: 21
[7] Sun Y W, Chen J Z, Liu J. Mater Sci Eng, 2015; A625: 89
[8] Dodds P E, Demoullin S. Int J Hydrogen Energy, 2013; 38: 7189
[9] Haeseldonckx D, Djaeseleer W. Int J Hydrogen Energy, 2007; 32: 1381
[10] Liu Y, Li Y, Li Q. Acta Metall Sin, 2013; 49: 1089 (刘 玉, 李 焰, 李 强. 金属学报, 2013; 49: 1089)
[11] Fan L, Liu Z Y, Du C W, Li X G. Acta Metall Sin, 2013; 49: 689 (范 林, 刘智勇, 杜翠薇, 李晓刚. 金属学报, 2013; 49: 689)
[12] Esaklul K A, Ahmed T M. Eng Fail Anal, 2009; 16: 1195
[13] Capelle J, Gilgert J, Dmytrakh I, Plubinage G. Int J Hydrogen Energy, 2008; 33: 7630
[14] Yang Z. Master Thesis, Institute of Oceanography, Chinese Academy of Sciences, Qingdao, 2004 (杨 洲. 中国科学院海洋研究所硕士学位论文, 青岛, 2004)
[15] Briottet L, Batisse R, Dinechin G, Langlois P, Thiers L. Int J Hydrogen Energy, 2012; 37: 9423
[16] Nanninga N E, Levy Y S, Drexler E S, Condon R T, Stevenson A E, Slifka A J. Corros Sci, 2012; 52: 1
[17] Briottet L, Moro I, Lemoine P. Int J Hydrogen Energy, 2012; 37: 17616
[18] Moro I, Briottet L, Lemoine P, Andrieu E, Blanc C, Odemer G. Mater Sci Eng, 2010; A527: 7252
[19] Miao C L, Shang C J, Wang X M, Zhang L F. Acta Metall Sin, 2010; 46: 541 (缪成亮, 尚成嘉, 王学敏, 张龙飞. 金属学报, 2010; 46: 541)
[20] Zhu Z X, Kuzmikova L, Li H J, Barbaro F. Mater Sci Eng, 2014; A605: 8
[21] Chen X W, Qiao G Y, Han X L, Wang X, Xiao F R, Liao B. Mater Des, 2014; 53: 888
[22] Li H L,Guo S W,Feng Y R,Huo C Y,Chai H F. Microstructure Analysis and Metallograph Identification of High-Strength Microalloying Pipelines Steel. Beijing: Petroleum Industry Press, 2001: 69 (李鹤林,郭生武,冯耀荣,霍春勇,柴惠芬. 高强度微合金管线钢显微组织分析与鉴别图谱. 北京: 石油工业出版社, 2001: 69)
[23] Cheng Y F. Int J Hydrogen Energy, 2007; 32: 1269
[24] Zhang T M, Zhao W M, Guo W, Wang Y. J Chin Soc Corros Prot, 2014; 34: 315 (张体明, 赵卫民, 郭 望, 王 勇. 中国腐蚀与防护学报, 2014; 24: 315)
[25] Zhou C S, Zheng S Q, Chen C F, Lu G W. Corros Sci, 2013; 67: 184
[26] Chu W Y. Hydrogen Damage and Delayed Fracture. Beijing: Metallurgy Industry Press, 2000: 22 (褚武扬. 氢损伤与滞后断裂. 北京: 冶金工业出版社, 2000: 22)
[27] Rivera P C, Ramunni V P, Bruzzoni P. Corros Sci, 2012; 54: 106
[28] Xue H B, Cheng Y F. J Mater Eng Perform, 2013; 22: 170
[29] Chen Y X, Chang Q G. Acta Metall Sin, 2011; 47: 548 (陈业新, 常庆刚. 金属学报, 2011; 47: 548)
[30] Teus S M, Mazanko V F, Olive J M, Gavrijuk V G. Acta Mater, 2014; 69: 105
[31] Jothi S, Croft T N, Brown S G R. Int J Hydrogen Energy, 2014; 39: 20671
[32] Smoluchowski R. Phys Rev, 1952; 87: 482
[33] Yazdipour N, Haq A J, Muzaka K, Pereloma E V. Comput Mater Sci, 2012; 56: 49
[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[4] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[5] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[6] 李殿中, 王培. 金属材料的组织定制[J]. 金属学报, 2023, 59(4): 447-456.
[7] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 葛进国, 卢照, 何思亮, 孙妍, 殷硕. 电弧熔丝增材制造2Cr13合金组织与性能各向异性行为[J]. 金属学报, 2023, 59(1): 157-168.
[10] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[11] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[12] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[13] 刘仁慈, 王鹏, 曹如心, 倪明杰, 刘冬, 崔玉友, 杨锐. 700℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022, 58(8): 1003-1012.
[14] 张鑫, 崔博, 孙斌, 赵旭, 张欣, 刘庆锁, 董治中. Y元素对Cu-Al-Ni高温形状记忆合金性能的影响[J]. 金属学报, 2022, 58(8): 1065-1071.
[15] 张家榕, 李艳芬, 王光全, 包飞洋, 芮祥, 石全强, 严伟, 单以银, 杨柯. 热处理对一种双峰晶粒结构超低碳9Cr-ODS钢显微组织与力学性能的影响[J]. 金属学报, 2022, 58(5): 623-636.