Please wait a minute...
金属学报  2015, Vol. 51 Issue (7): 828-834    DOI: 10.11900/0412.1961.2014.00610
  本期目录 | 过刊浏览 |
Zr添加对NiAl/Cr(Mo)基共晶合金微观组织和力学性能的影响*
盛立远1(),郭建亭2,赖琛1,奚廷斐1
2 中国科学院金属研究所, 沈阳110016
EFFECT OF Zr ADDITION ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF NiAl/Cr(Mo) BASE EUTECTIC ALLOY
Liyuan SHENG1(),Jianting GUO2,Chen LAI1,Tingfei XI1
1 Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, Shenzhen Institute, Peking University, Shenzhen 518057
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

盛立远,郭建亭,赖琛,奚廷斐. Zr添加对NiAl/Cr(Mo)基共晶合金微观组织和力学性能的影响*[J]. 金属学报, 2015, 51(7): 828-834.
Liyuan SHENG, Jianting GUO, Chen LAI, Tingfei XI. EFFECT OF Zr ADDITION ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF NiAl/Cr(Mo) BASE EUTECTIC ALLOY[J]. Acta Metall Sin, 2015, 51(7): 828-834.

全文: PDF(5253 KB)   HTML
摘要: 

研究了Zr的添加对含Ti和Hf的NiAl/Cr(Mo)基共晶合金微观组织及压缩性能的影响. 结果表明, 少量Zr的添加会显著细化合金共晶胞内的NiAl/Cr(Mo)层片, 优化共晶胞界区域的NiAl和Cr(Mo)相尺寸; 随着Zr含量的增加, 共晶胞界的NiAl和Cr(Mo)相明显粗化, 且共晶胞界的Heusler相呈半连续状分布; 当Zr的含量增加至1% (原子分数)时, 共晶胞界的Heusler相形成连续的网状, 且有粗大的富Cr相形成. Zr的添加促进了合金中NiAl和Cr(Mo)相中粗大b-NiAl和a-Cr相的析出, 且Heusler相形成元素在析出相界面的偏聚导致了大量界面位错的形成. 此外, Zr的添加导致了细小Heusler颗粒在NiAl相中的析出. 适量Zr的添加可显著提高Ni-33Al-28Cr-5.5Mo-1.0Ti-0.3Hf共晶合金的室温和高温压缩强度, 且几乎不降低其压缩塑性, 较多Zr的添加会降低合金的压缩塑性.

关键词 NiAl/Cr(Mo)基共晶合金ZrHeusler相微观组织压缩性能    
Abstract

NiAl base eutectic alloy is an attractive material and promising to use in high temperature environment. However, the inadequate high temperature strength limits its application. In order to improve its strength, Zr was added in the Ti and Hf doped NiAl/Cr(Mo) base eutectic alloys and the effect of Zr addition on microstructure and mechanical properties of the eutectic alloy was investigated in this work. The results show that small addition of Zr can refine the NiAl/Cr(Mo) lamella inside the eutectic cell and optimize NiAl and Cr(Mo) phase morphology in the intercellular zone. Moreover, the Zr addition promotes the precipitation of bulk Heusler phase along eutectic cell boundary. With the increase of Zr addition, the eutectic cell of the alloys becomes fine, but the NiAl and Cr(Mo) phases in the intercellular zone become coarse and the Heusler phases exhibits semi-continuously distribution along the eutectic cell boundary. When the Zr content increases to 1% (atomic fraction), the NiAl and Cr(Mo) phases in eutectic cell and intercellular zone are all coarsened obviously. Additionally, coarse Cr-rich phases precipitate in the intercellular zone and Heusler phase forms the continuous network along eutectic cell boundary. The addition of Zr promotes the precipitation of coarse b-NiAl and a-Cr phase in Cr(Mo) phase and NiAl phases, respectively. Moreover, the segregation of Heusler phase forming elements along the precipitate interface leads to the formation of a large number of interfacial dislocations. In addition, the addition of Zr results in the precipitation of fine Heusler particles in NiAl phase. It is shown that appropriate addition of Zr can improve the compression strength of Ni-33Al-28Cr-5.5Mo-1.0Ti-0.3Hf eutectic alloys significantly at room temperature and high temperature without reducing its compression plasticity, but more addition of Zr reduces the compressive plastic of the alloy inevitably.

Key wordsNiAl/Cr(Mo) base eutectic alloy    Zr    Heusler phase    microstructure    compressive property
    
基金资助:*深圳市新兴产业基础研究项目JCYJ20140419114548515和JCYJ20130402172114948, 深圳市联合创新国际合作项目GJHZ20140419114548516及深圳市技术开发项目CXZZ20140731091722497资助
图1  Ni-33Al-28Cr-5.5Mo-1.0Ti-0.3Hf-xZr (A1~A4)合金的 SEM像
Alloy Phase Ni Al Cr Mo Ti Hf Zr
Al NiAl 46.74 45.56 4.01 0.98 2.18 0.53 0
Cr(Mo) 8.04 9.53 70.62 11.73 0.06 0.01 0
Heusler 45.12 24.81 4.48 2.12 4.40 19.07 0
A2 NiAl 47.17 45.70 3.51 0.53 2.11 0.42 0.56
Cr(Mo) 7.13 10.94 68.46 13.26 0.09 0.01 0. 10
Heusler 44.27 22.26 5.66 1.89 4.10 14.92 6.90
A3 NiAl 46.97 45.67 4.06 0.41 1.90 0.34 0.65
Cr(Mo) 6.64 8.34 72.71 12.10 0.08 0.01 0.12
Heusler 45.42 22.96 4.13 1.99 3.80 12.78 8.92
A4 NiAl 46.79 46.43 3.97 0.22 1.75 0.12 0.72
Cr(Mo) 6.15 8.14 72.93 12.58 0.07 0.01 0.10
Heusler 45.90 22.85 3.27 1.28 3.20 9.90 13.60
表1  A1~A4合金中各相元素成分的EPMA分析结果
图2  A1和A4合金的XRD谱
图3  A2合金中的Heusler相和(Ti, Hf, Zr)固溶体(Ti, Hf, Zr)ss的SEM像, TEM像和SAED谱
图4  A1合金的TEM像
图5  A4合金中析出颗粒的TEM像
Alloy Temperature Yield Compressive Compressive
strain / %
strength / MPa strength / MPa
A1 RT 1401 1739 17
1273 K 330 420 >35
A2 RT 1485 1975 12
1273 K 410 550 >35
A3 RT 1530 2265 16
1273 K 440 575 >35
A4 RT 1494 1995 7
1273 K 420 510 >35
表2  A1~A4合金在室温和1273 K下的压缩性能
[1] Ye H Q. Met Powder Rep, 1997; 51: 36
[2] Guo J T. Ordered Intermetallic Compound NiAl Alloy. Beijing: Science Press, 2003: 104 (郭建亭. 有序金属间化合物NiAl. 北京: 科学出版社, 2003: 104)
[3] Miracle D B. Acta Metall Mater, 1993; 41: 649
[4] Sheng L Y, Xie Y, Xi T F, Guo J T, Zheng Y F, Ye H Q. Mater Sci Eng, 2011; A528: 8324
[5] Yang J M, Jeng S M, Bain K, Amato R A. Acta Mater, 1997; 45: 295
[6] Sheng L Y, Yang F, Xi T F, Zheng Y F, Guo J T. Trans Nonferrous Met Soc China, 2013; 23: 983
[7] Seemüller C, Heilmaier M, Haenschke T, Bei H, Dlouhy A, George E P. Intermetallics, 2013; 35: 110
[8] Sheng L Y, Yang F, Guo J T, Xi T F, Ye H Q. Compos Part Eng, 2013; 45E: 785
[9] Chen X F, Johnson D R, Noebe R D, Oliver B F. J Mater Res, 1995; 10: 1159
[10] Sheng L Y, Guo J T, Ren W L, Zhang Z X, Ren Z M, Ye H Q. Intermetallics, 2011; 19: 143
[11] Whittenberger D J, Noebe R D, Joslin S M, Oliver B F. Intermetallics, 1999; 7: 627
[12] Sheng L Y, Yang F, Guo J T, Xi T F. Trans Nonferrous Met Soc China, 2014; 24: 673
[13] Sheng L Y, Yang F, Xi T F, Lai C, Guo J T. Mater Res Innov, 2013; 17(suppl): S101
[14] Tang L Z, Zhang Z G, Li S S, Gong S K. Trans Nonferrous Met Soc China, 2010; 20: 212
[15] Sheng L Y, Zhang W, Guo J T, Ye H Q. Mater Charact, 2009; 60: 1311
[16] Golberg D, Sauthoff G. Intermetallics, 1996; 4: 253
[17] Hagihara K, Sugino Y, Umakoshi Y. Intermetallics, 2006; 14: 1326
[18] Sheng L Y, Guo J T, Zhou L Z, Ye H Q. Mater Sci Eng, 2009; A500:238
[19] Frommeyer G, Rablbauer R, Sch?fer H J. Intermetallics, 2010; 18: 299
[20] Sheng L Y, Zhang W, Guo J T, Zhou L Z, Ye H Q. Intermetallics, 2009; 17: 1115
[21] Sheng L Y, Nan L, Zhang W, Guo J T, Ye H Q. J Mater Eng Perform, 2010; 19: 732
[22] Sheng L Y, Zhang W, Lai C, Guo J T, Xi T F, Ye H Q. Acta Metall Sin, 2013; 11: 1318 (盛立远, 章 炜, 赖 琛, 郭建亭, 奚廷斐, 叶恒强. 金属学报, 2013; 11: 1318)
[23] Chen Y X, Cui C Y, Guo J T, Li D X. Mater Sci Eng, 2004; A373: 279
[24] Shang Z, Shen J, Wang L, Du Y J, Xiong Y L, Fu H Z. Intermetallics, 2015; 57: 25
[25] Sheng L Y, Yang F, Xi T F, Guo J T, Ye H Q. Mater Sci Eng, 2012; A555: 131
[26] Li H T, Guo J T, Ye H Q. Mater Sci Eng, 2007; A452-453: 763
[27] Sheng L Y, Wang L J, Xi T F, Zheng Y F, Ye H Q. Mater Des, 2011; 32: 4810
[28] Sheng L Y, Yang F, Xi T F, Zheng Y F, Guo J T. Intermetallics, 2012; 27: 4
[29] Bei H, George E P. Acta Mater, 2005; 53: 69
[30] Sheng L Y, Guo J T, Xi T F, Zhang B C, Ye H Q. Prog Nat Sci, 2012; 22: 231
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[5] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[8] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[9] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[10] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[11] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[12] 杨天野, 崔丽, 贺定勇, 黄晖. 选区激光熔化AlSi10Mg-Er-Zr合金微观组织及力学性能强化[J]. 金属学报, 2022, 58(9): 1108-1117.
[13] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[14] 耿遥祥, 唐浩, 许俊华, 张志杰, 喻利花, 鞠洪博, 江乐, 简江林. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8): 1044-1054.
[15] 宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.