|
|
镍基高温合金K417G与氧化物耐火材料的界面反应 |
宋庆忠1,2, 潜坤1,3, 舒磊1,3, 陈波1,3( ), 马颖澈1,3, 刘奎1,3 |
1.中国科学院金属研究所 沈阳 110016 2.东北大学 冶金学院 沈阳 110819 3.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 |
|
Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories |
SONG Qingzhong1,2, QIAN Kun1,3, SHU Lei1,3, CHEN Bo1,3( ), MA Yingche1,3, LIU Kui1,3 |
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Metallurgy, Northeastern University, Shenyang 110819, China 3.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
Qingzhong SONG,
Kun QIAN,
Lei SHU,
Bo CHEN,
Yingche MA,
Kui LIU.
Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories[J]. Acta Metall Sin, 2022, 58(7): 868-882.
1 |
Shi C X, Zhong Z Y. Development and innovation of superalloy in China [J]. Acta Metall. Sin., 2010, 46: 1281
doi: 10.3724/SP.J.1037.2010.01281
|
1 |
师昌绪, 仲增墉. 我国高温合金的发展与创新 [J]. 金属学报, 2010, 46: 1281
doi: 10.3724/SP.J.1037.2010.00309
|
2 |
Akca E, Gürsel A. A review on superalloys and IN718 nickel-based INCONEL superalloy [J]. Period. Eng. Nat. Sci., 2015, 3: 15
|
3 |
Huang Q Y, Li H K. Superalloy [M]. Beijing: Metallurgical Industry Press, 2000: 4
|
3 |
黄乾尧, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000: 4
|
4 |
Jiang Z H, Zhang X F, Liu F B, et al. Harmful impurities control of raw material used in Ni-based superalloy production [J]. Iron Steel, 2017, 52(9): 1
|
4 |
姜周华, 张新法, 刘福斌 等. 镍基高温合金生产用原材料有害杂质的控制 [J]. 钢铁, 2017, 52(9): 1
|
5 |
Niu J P, Sun X F, Jin T, et al. Super refining of superalloys by VIM [J]. Mater. Rev., 2001, 15(11): 27
doi: 10.1179/imr.1970.15.1.27
|
5 |
牛建平, 孙晓峰, 金 涛 等. 高温合金的真空感应超纯净熔炼 [J]. 材料导报, 2001, 15(11): 27
|
6 |
Wan X J, Zhang H X, Yu A, et al. Superrefining of Ni-base superalloy by VIDP [J]. Vacuum, 2018, 55(3): 48
|
6 |
万旭杰, 张华霞, 于 昂 等. 镍基高温合金VIDP真空超纯净熔炼 [J]. 真空, 2018, 55(3): 48
|
7 |
Li N. Reaction Between Refractory and Steel and Its Effect on Steel Quality [M]. Beijing: Metallurgical Industry Press, 2005: 26
|
7 |
李 楠. 耐火材料与钢铁的反应及对钢质量的影响 [M]. 北京: 冶金工业出版社, 2005: 26
|
8 |
Xie K W, Chen B, Zhang M S, et al. Desulfurization mechanism of K4169 superalloy using CaO crucible in vacuum induction melting process [A]. High Performance Structural Materials [C]. Yinchuan, China: Springer, 2017: 575
|
9 |
Niu J P, Yang K N, Sun X F, et al. Investigation on deoxidation during VIM refining Ni-base superalloy by using CaO crucible [J]. Acta Metall. Sin., 2002, 38: 303
|
9 |
牛建平, 杨克努, 孙晓峰 等. 用CaO坩埚真空感应熔炼镍基高温合金脱氧研究 [J]. 金属学报, 2002, 38: 303
|
10 |
Song R K, Ma D, Wu S J. Microstructure, mechanical properties and thermal fatigue behavior of K417G alloy used in turbine guide vane [J]. Rare Met. Mater. Eng., 2019, 48: 1517
|
10 |
宋若康, 马 东, 吴素君. K417G服役涡轮导向叶片的组织性能及热疲劳损伤机理分析 [J]. 稀有金属材料与工程, 2019, 48: 1517
|
11 |
Choudhury A. State of the art of superalloy production for aerospace and other application using VIM/VAR or VIM/ESR [J]. ISIJ Int., 1992, 32: 563
doi: 10.2355/isijinternational.32.563
|
12 |
Qian K, Chen B, Shu L, et al. Nitrogen solubility in liquid Ni-V, Ni-Ta, Ni-Cr-V, and Ni-Cr-Ta alloys [J]. Metals, 2019, 9: 1184
doi: 10.3390/met9111184
|
13 |
Qian K, Chen B, Zhang L, et al. Kinetics study of nitrogen removal from liquid IN718 alloy during vacuum induction melting [J]. Vacuum, 2020, 179: 109521
doi: 10.1016/j.vacuum.2020.109521
|
14 |
Bodnar R L, Ohhashi T, Jaffee R I. Effects of Mn, Si, and purity on the design of 3.5NiCrMoV, 1CrMoV, and 2.25Cr-1Mo bainitic alloy steels [J]. Metall. Mater. Trans., 1989, 20A: 1445
|
15 |
Yue J B. Technical progress and characteristics of vacuum induction melting furnaces [J]. Shanxi Metall., 2017, 40(2): 33
|
15 |
岳江波. 真空感应熔炼炉工艺特点及其技术进展 [J]. 山西冶金, 2017, 40(2): 33
|
16 |
Fashu S, Lototskyy M, Davids M W, et al. A review on crucibles for induction melting of titanium alloys [J]. Mater. Des., 2020, 186: 108295
doi: 10.1016/j.matdes.2019.108295
|
17 |
Zhu S G, Li L, Chang T Q, et al. Effect of impurity elements on microstructure and castability of directionally solidified superalloy DZ125L [J]. Non-Ferrous Mining Metall., 2017, 33(6): 31
|
17 |
朱石刚, 李 琳, 常涛歧 等. 杂质元素含量对定向凝固镍基高温合金DZ125L微观组织及铸造性能的影响 [J]. 有色矿冶, 2017, 33(6): 31
|
18 |
Jiang L, Guo S Q, Bian Y Y, et al. Interfacial behaviors of magnesia partially stabilized zirconia with nickel-based superalloy [J]. Mater. Lett., 2016, 181: 313
doi: 10.1016/j.matlet.2016.06.029
|
19 |
Li J P, Zhang H R, Gao M, et al. High-temperature wettability and interactions between Y-containing Ni-based alloys and various oxide ceramics [J]. Materials, 2018, 11: 749
doi: 10.3390/ma11050749
|
20 |
Li Q, Song J X, Wang D G, et al. Effect of Cr, Hf and temperature on interface reaction between nickel melt and silicon oxide core [J]. Rare Met., 2011, 30: 405
doi: 10.1007/s12598-011-0313-6
|
21 |
Valenza F, Nowak R, Sobczak N, et al. Interactions between superalloys and mould materials for investment casting of turbine blades [J]. Adv. Sci. Technol., 2010, 70: 130
|
22 |
Yao J S, Tang D Z, Liu X G, et al. Interaction between two Ni-base alloys and ceramic moulds [J]. Mater. Sci. Forum, 2013, 747-748: 765
doi: 10.4028/www.scientific.net/MSF.747-748.765
|
23 |
Hu B Y, Xu Y Q, Zhang H D. Special Refractory Practical Technical Manuals [M]. Beijing: Metallurgical Industry Press, 2004: 1
|
23 |
胡宝玉, 徐延庆, 张宏达. 特种耐火材料实用技术手册 [M]. 北京: 冶金工业出版社, 2004: 1
|
24 |
Kostov A, Friedrich B. Predicting thermodynamic stability of crucible oxides in molten titanium and titanium alloys [J]. Comput. Mater. Sci., 2006, 38: 374
doi: 10.1016/j.commatsci.2006.03.006
|
25 |
Gomes F, Barbosa J, Ribeiro C S. Induction melting of γ-TiAl in CaO crucibles [J]. Intermetallics, 2008, 16: 1292
doi: 10.1016/j.intermet.2008.08.008
|
26 |
Chen B, Ma Y C, Gao M, et al. Changes of oxygen content in molten TiAl alloys as a function of superheat during vacuum induction melting [J]. J. Mater. Sci. Technol., 2010, 26: 900
doi: 10.1016/S1005-0302(10)60144-2
|
27 |
Sakamoto K, Yoshikawa K, Kusamichi T, et al. Changes in oxygen contents of titanium aluminides by vacuum induction, cold crucible induction and electron-beam melting [J]. ISIJ Int., 1992, 32: 616
doi: 10.2355/isijinternational.32.616
|
28 |
Tetsui T, Kobayashi T, Kishimoto A, et al. Structural optimization of an yttria crucible for melting TiAl alloy [J]. Intermetallics, 2012, 20: 16
doi: 10.1016/j.intermet.2011.08.026
|
29 |
Gao M, Cui R J, Ma L M, et al. Physical erosion of yttria crucibles in Ti-54Al alloy casting process [J]. J. Mater. Process. Technol., 2011, 211: 2004
doi: 10.1016/j.jmatprotec.2011.06.021
|
30 |
Gao P Y, Liu Y Z, Ren Y, et al. Evaluation of the microstructure and property of TiNi SMA prepared using VIM in BaZrO3 crucible [J]. Vacuum, 2019, 168: 108843
doi: 10.1016/j.vacuum.2019.108843
|
31 |
Meng D Z, Chen G Y, Zhang R L, et al. Preparation of Y2O3 doped SrZrO3 refractory and study on its interface reaction with molten TiNi alloys [J]. Key Eng. Mater., 2018, 768: 256
doi: 10.4028/www.scientific.net/KEM.768.256
|
32 |
Kabiri Y, Kermanpur A, Foroozmehr A. Comparative study on microstructure and homogeneity of NiTi shape memory alloy produced by copper boat induction melting and conventional vacuum arc melting [J]. Vacuum, 2012, 86: 1073
doi: 10.1016/j.vacuum.2011.09.012
|
33 |
Li C H, He J, Zhang Z, et al. Preparation of TiFe based alloys melted by CaO crucible and its hydrogen storage properties [J]. J. Alloys Compd., 2015, 618: 679
doi: 10.1016/j.jallcom.2014.08.154
|
34 |
Wei J W, Han B Q, Wang X C, et al. Improvement in hydration resistance of CaO granules based on CaO-TiO2, CaO-ZrO2 and CaO-V2O5 systems [J]. Mater. Chem. Phys., 2020, 254: 123413
doi: 10.1016/j.matchemphys.2020.123413
|
35 |
Chen Z Y. Chemical Thermodynamics of Refractories [M]. Beijing: Metallurgical Industry Press, 2008: 423
|
35 |
陈肇友. 化学热力学与耐火材料 [M]. 北京: 冶金工业出版社, 2008: 423
|
36 |
Boniecki M, Librant Z, Wesołowski W, et al. The thermal shock resistance of Y2O3 ceramics [J]. Ceram. Int., 2016, 42: 10215
doi: 10.1016/j.ceramint.2016.03.140
|
37 |
Cheng X, Yuan C, Green N R, et al. Sintering mechanisms of yttria with different additives [J]. Ceram. Int., 2013, 39: 4791
doi: 10.1016/j.ceramint.2012.11.069
|
38 |
Jiang L, Guo S Q, Qiao M R, et al. Study on the structure and mechanical properties of magnesia partially stabilized zirconia during cyclic heating and cooling [J]. Mater. Lett., 2017, 194: 26
doi: 10.1016/j.matlet.2017.01.135
|
39 |
Schafföner S. Reactions of alkaline earth zirconate refractories with titanium alloys [A]. The 14th World Conference on Titanium (Ti 2019) [C]. Nantes, France: EDP Sciences, 2020: 10012
|
40 |
Schafföner S, Fruhstorfer J, Ludwig S, et al. Cyclic cold isostatic pressing and improved particle packing of coarse grained oxide ceramics for refractory applications [J]. Ceram. Int., 2018, 44: 9027
doi: 10.1016/j.ceramint.2018.02.106
|
41 |
Chang Y W, Lin C C. Compositional dependence of phase formation mechanisms at the interface between titanium and calcia-stabilized zirconia at 1550oC [J]. J. Am. Ceram. Soc., 2010, 93: 3893
doi: 10.1111/j.1551-2916.2010.03946.x
|
42 |
Lin C C, Chang Y W, Lin K L, et al. Effect of yttria on interfacial reactions between titanium melt and hot-pressed yttria/zirconia composites at 1700oC [J]. J. Am. Ceram. Soc., 2008, 91: 2321
doi: 10.1111/j.1551-2916.2008.02428.x
|
43 |
Chen Z Y. Phase Diagrams of Refractories [M]. Beijing: Metallurgical Industry Press, 2014: 32
|
43 |
陈肇友. 相图与耐火材料 [M]. 北京: 冶金工业出版社, 2014: 32
|
44 |
Kishimoto Y, Utada S, Iguchi T, et al. Desulfurization model using solid CaO in molten Ni-based superalloys containing Al [J]. Metall. Mater. Trans., 2020, 51B: 293
|
45 |
Kumar G, Prabhu K N. Review of non-reactive and reactive wetting of liquids on surfaces [J]. Adv. Colloid Interface Sci., 2007, 133: 61
doi: 10.1016/j.cis.2007.04.009
|
46 |
Wan C, Kritsalis P, Drevet B, et al. Optimization of wettability and adhesion in reactive nickel-based alloys/alumina systems by a thermodynamic approach [J]. Mater. Sci. Eng., 1996, A207: 181
|
47 |
Sadrnezhad S K, Raz S B. Interaction between refractory crucible materials and the melted NiTi shape-memory alloy [J]. Metall. Mater. Trans., 2005, 36B: 395
|
48 |
Zhang T, Wei Y W, Chen J F, et al. Preparation of CaO-MgO-ZrO2 refractory and its desulfurization effect on Ni-based alloy in vacuum induction melting (VIM) [J]. J. Aust. Ceram. Soc., 2020, 56: 885
doi: 10.1007/s41779-019-00421-8
|
49 |
Gao X Y, Zhang L, Qu X H, et al. Effect of interaction of refractories with Ni-based superalloy on inclusions during vacuum induction melting [J]. Int. J. Miner. Metall. Mater., 2020, 27: 1551
doi: 10.1007/s12613-020-2098-9
|
50 |
Durov A V, Naidich Y V, Kostyuk B D. Investigation of interaction of metal melts and zirconia [J]. J. Mater. Sci., 2005, 40: 2173
doi: 10.1007/s10853-005-1928-5
|
51 |
Zi Y, Meng J, Zhang C W, et al. Effect of Y content on interface reaction and wettability between a nickel-base single crystal superalloy melt and ceramic mould [J]. J. Alloys Compd., 2019, 789: 472
doi: 10.1016/j.jallcom.2019.03.037
|
52 |
Liu Q M, Huang S Z, Liu F, et al. Effect of boron content on microstructure evolution during solidification and mechanical properties of K417G alloy [J]. Acta Metall. Sin., 2019, 55: 720
|
52 |
刘巧沐, 黄顺洲, 刘 芳 等. B含量对K417G合金凝固过程中组织演变和力学性能的影响 [J]. 金属学报, 2019, 55: 720
|
53 |
Tetsui T, Kobayashi T, Mori T, et al. Evaluation of yttria applicability as a crucible for induction melting of TiAl alloy [J]. Mater. Trans., 2010, 51: 1656
doi: 10.2320/matertrans.MAW201002
|
54 |
Li J P, Zhang H R, Gao M, et al. Effect of vacuum level on the interfacial reactions between K417 superalloy and Y2O3 crucibles [J]. Vacuum, 2020, 182: 109701
doi: 10.1016/j.vacuum.2020.109701
|
55 |
Ye D L, Hu J H. Thermodynamic Data Sheet of Practical Inorganic [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2002: 1
|
55 |
叶大伦, 胡建华. 实用无机物热力学数据手册 [M]. 第 2版, 北京: 冶金工业出版社, 2002: 1
|
56 |
Chen X Y, Jin Z, Bai X F, et al. Effect of C on the interfacial reaction and wettability between a Ni-based superalloy and ceramic mould [J]. Acta Metall. Sin., 2015, 51: 853
|
56 |
陈晓燕, 金 喆, 白雪峰 等. C对一种镍基高温合金与陶瓷型壳界面反应及润湿性的影响 [J]. 金属学报, 2015, 51: 853
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|