Please wait a minute...
金属学报  2022, Vol. 58 Issue (7): 868-882    DOI: 10.11900/0412.1961.2021.00048
  研究论文 本期目录 | 过刊浏览 |
镍基高温合金K417G与氧化物耐火材料的界面反应
宋庆忠1,2, 潜坤1,3, 舒磊1,3, 陈波1,3(), 马颖澈1,3, 刘奎1,3
1.中国科学院金属研究所 沈阳 110016
2.东北大学 冶金学院 沈阳 110819
3.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories
SONG Qingzhong1,2, QIAN Kun1,3, SHU Lei1,3, CHEN Bo1,3(), MA Yingche1,3, LIU Kui1,3
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Metallurgy, Northeastern University, Shenyang 110819, China
3.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

宋庆忠, 潜坤, 舒磊, 陈波, 马颖澈, 刘奎. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
Qingzhong SONG, Kun QIAN, Lei SHU, Bo CHEN, Yingche MA, Kui LIU. Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories[J]. Acta Metall Sin, 2022, 58(7): 868-882.

全文: PDF(5547 KB)   HTML
摘要: 

研究了1600℃温度下Al2O3、CaO、MgO、Y2O3稳定ZrO2、CaO稳定ZrO2和Y2O3共6种材料坩埚与镍基高温合金K417G熔体的界面反应。结果表明:熔体对Al2O3坩埚以物理侵蚀为主,但坩埚易剥落导致合金中含有Al2O3夹杂物;CaO坩埚与合金界面处生成了液相Ca3Al2O6,促进熔体与CaO之间的润湿性,导致界面处粘连严重;MgO坩埚与熔体中Al反应生成MgAl2O4并进入合金生成夹杂物;Y2O3稳定ZrO2坩埚与合金界面处生成Al2O3反应层,但是Al2O3层未对坩埚发生侵蚀,可见这种坩埚具有较强的抗Al2O3渣的能力;CaO稳定ZrO2坩埚与合金界面处生成液相CaAl2O4,导致坩埚失稳,向合金内剥落溶解;Y2O3坩埚与合金界面处主要生成Al2Y4O9反应层,并且Y2O3向合金内溶解较为严重。坩埚和熔体交互作用对K417G熔体杂质O含量有显著影响,CaO、Y2O3和Y2O3稳定ZrO2坩埚熔炼合金中O含量没有增加,而CaO稳定ZrO2坩埚熔炼后O含量由0.0007% (质量分数)增加至0.0011%,MgO和Al2O3坩埚熔炼后,合金O含量增加明显,由0.0007%分别增加至0.0034%和0.0135%。

关键词 界面反应K417G耐火材料Al2O3CaOMgOZrO2Y2O3    
Abstract

High-performance nickel-based superalloys are highly desired in the aerospace industry. A drawback of vacuum induction melting for processing nickel-based superalloys is that oxide refractories contaminate the molten alloy through crucible-melt interaction. Therefore, crucibles used for producing nickel-based superalloys should be carefully selected to avoid melt contamination. In this study, the interfacial reaction between a molten nickel-based superalloy (K417G) and various oxide refractories, including Al2O3, CaO, MgO, ZrO2 + 12%Y2O3 (mass fraction) (Y-PSZ), ZrO2 + 20%CaO (CSZ), and Y2O3, formed by cold isostatic pressing was investigated at 1600oC by XRD, SEM, and EDS. The effects of the oxide crucibles on the impurity contents of K417G were also evaluated. The results show that physical erosion is the primary mechanism of the interaction between Al2O3 crucibles and alloy melt. The readily detached Al2O3 particles formed inclusions in the alloy. The Ca3Al2O6 liquid phase generated at the melt-crucible interface promoted wettability between the alloy and CaO crucible, resulting in a high adhesion at the interface. The reaction of the MgO crucible with Al in the alloy resulted in the formation of MgAl2O4 at the melt-crucible interface, which subsequently entered the alloy to form inclusions. Al2O3 was generated at the Y-PSZ-crucible-alloy interface. However, there was no corrosion of Al2O3 in the Y-PSZ crucible, indicating the crucible exhibits excellent corrosion resistance to Al2O3 slags. The interaction between the CSZ crucible and alloy melt generated a CaAl2O4 liquid phase, making the crucible unstable to dissolve into the alloy. An Al2Y4O9 reaction layer is mainly formed at the Y2O3-crucible-alloy interface. The dissolution of Y2O3 into the alloy melt was high compared to that of other oxide refractories. The melt-crucible interaction also significantly affected the oxygen content of K417G. The oxygen concentration of the alloy fused by CaO, Y2O3, and Y-PSZ crucibles did not increase, whereas that of the alloy melted in CSZ, MgO, and Al2O3 crucibles increased from 0.0007% to 0.0011%, 0.0034%, and 0.0135%, respectively.

Key wordsinterfacial reaction    K417G    refractory    Al2O3    CaO    MgO    ZrO2    Y2O3
收稿日期: 2021-01-26     
ZTFLH:  TG146.1  
作者简介: 宋庆忠,男,1996年生,硕士
Raw materialPurity / (mass fraction, %)
Al2O3≥ 99.61, MgO ≤ 0.10, SiO2 ≤ 0.13, CaO ≤ 0.16, Fe2O3 ≤ 0.002, TiO2 ≤ 0.01, Na2O ≤ 0.03
CaO≥ 96.78, MgO ≤ 0.53, Al2O3 ≤ 0.20, SiO2 ≤ 0.05, TFe ≤ 0.01, TiO2 ≤ 0.014, S ≤ 0.001, Loss ≤ 2.01
MgO≥ 98.5, Fe ≤ 0.005, Ba ≤ 0.003, Cl- ≤ 0.07, SO 42- ≤0.05, Pb ≤ 0.005, Loss ≤ 4.5,
Y2O3≥ 99.99, Loss ≤ 0.01
ZrO2≥ 99.0, Fe2O3 ≤ 0.005, MgO ≤ 0.05, CaO ≤ 0.05, TiO2 ≤ 0.005, SiO2 ≤ 0.01, Loss ≤ 1
表1  制作氧化物坩埚的原料纯度
CrucibleCompositionPressureSintering temperatureApparent porosityBulk density
(mass fraction)MPa%g·cm-3
Al2O3100%28016801.263.76
CaO100%28016801.233.00
MgO100%28016801.233.40
Y-PSZ12%Y2O3 + 88%ZrO2280168015.004.94
CSZ20%CaO + 80%ZrO2280168028.003.50
Y2O3100%280168021.503.94
表2  坩埚制作工艺参数、显气孔率和体积密度
图1  实验设备示意图
图2  不同氧化物坩埚的XRD谱
图3  Al2O3熔炼后K417G合金宏观形貌
图4  Al2O3坩埚熔炼后合金液面处的Al2O3夹杂物
图5  Al2O3坩埚与镍基高温合金K417G界面的SEM像及EDS元素分布图
LocationOAlCaMgTiNi
A54.2741.123.310.450.300.55
B55.7944.210.000.000.000.00
表3  图5a中Al2O3坩埚与K417G合金界面处EDS分析结果 (atomic fraction / %)
图6  CaO坩埚与镍基高温合金K417G界面的SEM像及EDS元素分布图
LocationOAlCaTiVCoNi
C49.3920.0430.150.040.070.070.24
D64.920.0034.970.080.000.000.03
表4  图6d中CaO坩埚与K417G合金界面处EDS分析结果 (atomic fraction / %)
图7  CaO熔炼的镍基高温合金K417G宏观形貌
图8  MgO坩埚与镍基高温合金K417G界面SEM像及EDS元素分布图
LocationOAlMgCrNi
E50.9132.7316.120.090.15
F43.410.1756.210.080.13
表5  图8a中MgO坩埚与K417G合金界面处EDS分析结果 (atomic fraction / %)
图9  MgO坩埚熔体上表面液面处镁铝尖晶石夹杂物
图10  Y2O3部分稳定的ZrO2 (Y-PSZ)坩埚与镍基高温合金K417G界面的SEM像及EDS元素分布图
LocationOAlZrYTiCrCoNi
G57.9941.780.000.000.110.000.000.12
H62.330.4731.265.150.100.240.110.34
表6  图10a中Y-PSZ坩埚与K417G合金界面处EDS分析结果 (atomic fraction / %)
图11  Y-PSZ坩埚熔炼后合金液面处的Al2O3夹杂物
图12  CaO完全稳定的ZrO2 (CSZ)坩埚与镍基高温合金K417G界面SEM像及EDS元素分布图
LocationOAlCaZrTiCrCoNi
I56.330.270.2039.750.080.420.452.50
J60.280.100.2238.390.070.000.000.95
K50.6127.2516.954.540.140.010.170.34
L70.040.005.2324.740.000.000.000.00
M63.4323.7711.511.290.000.000.000.00
N60.070.0017.9321.320.270.000.000.00
O61.940.006.6531.410.000.000.000.00
表7  CSZ坩埚与K417G合金界面处EDS分析结果(见图12~14各点) (atomic fraction / %)
图13  熔炼K417G合金后的CSZ坩埚背散射电子(BSE)像及EDS元素分布图
图14  CSZ坩埚原始形貌BSE像
图15  CSZ坩埚熔炼的K417G镍基高温合金宏观形貌
图16  Y2O3坩埚与镍基高温合金K417G界面SEM像及EDS元素分布图
图17  Y2O3坩埚与K417G合金界面组织及Y2O3坩埚熔炼后的K417G合金的BSE像
LocationOAlYTiCrCoNi
P57.2313.4528.700.150.040.060.37
Q56.050.0043.820.000.030.050.05
表8  图17a中Y2O3坩埚与K417G合金界面处EDS分析结果 (atomic fraction / %)
CrucibleOAlCaMgZrY
Al2O30.01355.25----
CaO0.0006-0.0010---
MgO0.0034--0.0090--
Y-PSZ0.0008---0.068< 0.0010
CSZ0.0011-0.0008-1.760-
Y2O30.0007----0.0150
表9  熔炼后K417G合金内杂质元素含量 (atomic fraction / %)
图18  氧化物耐火材料的标准生成Gibbs自由能(ΔGθ )与温度的关系
1 Shi C X, Zhong Z Y. Development and innovation of superalloy in China [J]. Acta Metall. Sin., 2010, 46: 1281
doi: 10.3724/SP.J.1037.2010.01281
1 师昌绪, 仲增墉. 我国高温合金的发展与创新 [J]. 金属学报, 2010, 46: 1281
doi: 10.3724/SP.J.1037.2010.00309
2 Akca E, Gürsel A. A review on superalloys and IN718 nickel-based INCONEL superalloy [J]. Period. Eng. Nat. Sci., 2015, 3: 15
3 Huang Q Y, Li H K. Superalloy [M]. Beijing: Metallurgical Industry Press, 2000: 4
3 黄乾尧, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000: 4
4 Jiang Z H, Zhang X F, Liu F B, et al. Harmful impurities control of raw material used in Ni-based superalloy production [J]. Iron Steel, 2017, 52(9): 1
4 姜周华, 张新法, 刘福斌 等. 镍基高温合金生产用原材料有害杂质的控制 [J]. 钢铁, 2017, 52(9): 1
5 Niu J P, Sun X F, Jin T, et al. Super refining of superalloys by VIM [J]. Mater. Rev., 2001, 15(11): 27
doi: 10.1179/imr.1970.15.1.27
5 牛建平, 孙晓峰, 金 涛 等. 高温合金的真空感应超纯净熔炼 [J]. 材料导报, 2001, 15(11): 27
6 Wan X J, Zhang H X, Yu A, et al. Superrefining of Ni-base superalloy by VIDP [J]. Vacuum, 2018, 55(3): 48
6 万旭杰, 张华霞, 于 昂 等. 镍基高温合金VIDP真空超纯净熔炼 [J]. 真空, 2018, 55(3): 48
7 Li N. Reaction Between Refractory and Steel and Its Effect on Steel Quality [M]. Beijing: Metallurgical Industry Press, 2005: 26
7 李 楠. 耐火材料与钢铁的反应及对钢质量的影响 [M]. 北京: 冶金工业出版社, 2005: 26
8 Xie K W, Chen B, Zhang M S, et al. Desulfurization mechanism of K4169 superalloy using CaO crucible in vacuum induction melting process [A]. High Performance Structural Materials [C]. Yinchuan, China: Springer, 2017: 575
9 Niu J P, Yang K N, Sun X F, et al. Investigation on deoxidation during VIM refining Ni-base superalloy by using CaO crucible [J]. Acta Metall. Sin., 2002, 38: 303
9 牛建平, 杨克努, 孙晓峰 等. 用CaO坩埚真空感应熔炼镍基高温合金脱氧研究 [J]. 金属学报, 2002, 38: 303
10 Song R K, Ma D, Wu S J. Microstructure, mechanical properties and thermal fatigue behavior of K417G alloy used in turbine guide vane [J]. Rare Met. Mater. Eng., 2019, 48: 1517
10 宋若康, 马 东, 吴素君. K417G服役涡轮导向叶片的组织性能及热疲劳损伤机理分析 [J]. 稀有金属材料与工程, 2019, 48: 1517
11 Choudhury A. State of the art of superalloy production for aerospace and other application using VIM/VAR or VIM/ESR [J]. ISIJ Int., 1992, 32: 563
doi: 10.2355/isijinternational.32.563
12 Qian K, Chen B, Shu L, et al. Nitrogen solubility in liquid Ni-V, Ni-Ta, Ni-Cr-V, and Ni-Cr-Ta alloys [J]. Metals, 2019, 9: 1184
doi: 10.3390/met9111184
13 Qian K, Chen B, Zhang L, et al. Kinetics study of nitrogen removal from liquid IN718 alloy during vacuum induction melting [J]. Vacuum, 2020, 179: 109521
doi: 10.1016/j.vacuum.2020.109521
14 Bodnar R L, Ohhashi T, Jaffee R I. Effects of Mn, Si, and purity on the design of 3.5NiCrMoV, 1CrMoV, and 2.25Cr-1Mo bainitic alloy steels [J]. Metall. Mater. Trans., 1989, 20A: 1445
15 Yue J B. Technical progress and characteristics of vacuum induction melting furnaces [J]. Shanxi Metall., 2017, 40(2): 33
15 岳江波. 真空感应熔炼炉工艺特点及其技术进展 [J]. 山西冶金, 2017, 40(2): 33
16 Fashu S, Lototskyy M, Davids M W, et al. A review on crucibles for induction melting of titanium alloys [J]. Mater. Des., 2020, 186: 108295
doi: 10.1016/j.matdes.2019.108295
17 Zhu S G, Li L, Chang T Q, et al. Effect of impurity elements on microstructure and castability of directionally solidified superalloy DZ125L [J]. Non-Ferrous Mining Metall., 2017, 33(6): 31
17 朱石刚, 李 琳, 常涛歧 等. 杂质元素含量对定向凝固镍基高温合金DZ125L微观组织及铸造性能的影响 [J]. 有色矿冶, 2017, 33(6): 31
18 Jiang L, Guo S Q, Bian Y Y, et al. Interfacial behaviors of magnesia partially stabilized zirconia with nickel-based superalloy [J]. Mater. Lett., 2016, 181: 313
doi: 10.1016/j.matlet.2016.06.029
19 Li J P, Zhang H R, Gao M, et al. High-temperature wettability and interactions between Y-containing Ni-based alloys and various oxide ceramics [J]. Materials, 2018, 11: 749
doi: 10.3390/ma11050749
20 Li Q, Song J X, Wang D G, et al. Effect of Cr, Hf and temperature on interface reaction between nickel melt and silicon oxide core [J]. Rare Met., 2011, 30: 405
doi: 10.1007/s12598-011-0313-6
21 Valenza F, Nowak R, Sobczak N, et al. Interactions between superalloys and mould materials for investment casting of turbine blades [J]. Adv. Sci. Technol., 2010, 70: 130
22 Yao J S, Tang D Z, Liu X G, et al. Interaction between two Ni-base alloys and ceramic moulds [J]. Mater. Sci. Forum, 2013, 747-748: 765
doi: 10.4028/www.scientific.net/MSF.747-748.765
23 Hu B Y, Xu Y Q, Zhang H D. Special Refractory Practical Technical Manuals [M]. Beijing: Metallurgical Industry Press, 2004: 1
23 胡宝玉, 徐延庆, 张宏达. 特种耐火材料实用技术手册 [M]. 北京: 冶金工业出版社, 2004: 1
24 Kostov A, Friedrich B. Predicting thermodynamic stability of crucible oxides in molten titanium and titanium alloys [J]. Comput. Mater. Sci., 2006, 38: 374
doi: 10.1016/j.commatsci.2006.03.006
25 Gomes F, Barbosa J, Ribeiro C S. Induction melting of γ-TiAl in CaO crucibles [J]. Intermetallics, 2008, 16: 1292
doi: 10.1016/j.intermet.2008.08.008
26 Chen B, Ma Y C, Gao M, et al. Changes of oxygen content in molten TiAl alloys as a function of superheat during vacuum induction melting [J]. J. Mater. Sci. Technol., 2010, 26: 900
doi: 10.1016/S1005-0302(10)60144-2
27 Sakamoto K, Yoshikawa K, Kusamichi T, et al. Changes in oxygen contents of titanium aluminides by vacuum induction, cold crucible induction and electron-beam melting [J]. ISIJ Int., 1992, 32: 616
doi: 10.2355/isijinternational.32.616
28 Tetsui T, Kobayashi T, Kishimoto A, et al. Structural optimization of an yttria crucible for melting TiAl alloy [J]. Intermetallics, 2012, 20: 16
doi: 10.1016/j.intermet.2011.08.026
29 Gao M, Cui R J, Ma L M, et al. Physical erosion of yttria crucibles in Ti-54Al alloy casting process [J]. J. Mater. Process. Technol., 2011, 211: 2004
doi: 10.1016/j.jmatprotec.2011.06.021
30 Gao P Y, Liu Y Z, Ren Y, et al. Evaluation of the microstructure and property of TiNi SMA prepared using VIM in BaZrO3 crucible [J]. Vacuum, 2019, 168: 108843
doi: 10.1016/j.vacuum.2019.108843
31 Meng D Z, Chen G Y, Zhang R L, et al. Preparation of Y2O3 doped SrZrO3 refractory and study on its interface reaction with molten TiNi alloys [J]. Key Eng. Mater., 2018, 768: 256
doi: 10.4028/www.scientific.net/KEM.768.256
32 Kabiri Y, Kermanpur A, Foroozmehr A. Comparative study on microstructure and homogeneity of NiTi shape memory alloy produced by copper boat induction melting and conventional vacuum arc melting [J]. Vacuum, 2012, 86: 1073
doi: 10.1016/j.vacuum.2011.09.012
33 Li C H, He J, Zhang Z, et al. Preparation of TiFe based alloys melted by CaO crucible and its hydrogen storage properties [J]. J. Alloys Compd., 2015, 618: 679
doi: 10.1016/j.jallcom.2014.08.154
34 Wei J W, Han B Q, Wang X C, et al. Improvement in hydration resistance of CaO granules based on CaO-TiO2, CaO-ZrO2 and CaO-V2O5 systems [J]. Mater. Chem. Phys., 2020, 254: 123413
doi: 10.1016/j.matchemphys.2020.123413
35 Chen Z Y. Chemical Thermodynamics of Refractories [M]. Beijing: Metallurgical Industry Press, 2008: 423
35 陈肇友. 化学热力学与耐火材料 [M]. 北京: 冶金工业出版社, 2008: 423
36 Boniecki M, Librant Z, Wesołowski W, et al. The thermal shock resistance of Y2O3 ceramics [J]. Ceram. Int., 2016, 42: 10215
doi: 10.1016/j.ceramint.2016.03.140
37 Cheng X, Yuan C, Green N R, et al. Sintering mechanisms of yttria with different additives [J]. Ceram. Int., 2013, 39: 4791
doi: 10.1016/j.ceramint.2012.11.069
38 Jiang L, Guo S Q, Qiao M R, et al. Study on the structure and mechanical properties of magnesia partially stabilized zirconia during cyclic heating and cooling [J]. Mater. Lett., 2017, 194: 26
doi: 10.1016/j.matlet.2017.01.135
39 Schafföner S. Reactions of alkaline earth zirconate refractories with titanium alloys [A]. The 14th World Conference on Titanium (Ti 2019) [C]. Nantes, France: EDP Sciences, 2020: 10012
40 Schafföner S, Fruhstorfer J, Ludwig S, et al. Cyclic cold isostatic pressing and improved particle packing of coarse grained oxide ceramics for refractory applications [J]. Ceram. Int., 2018, 44: 9027
doi: 10.1016/j.ceramint.2018.02.106
41 Chang Y W, Lin C C. Compositional dependence of phase formation mechanisms at the interface between titanium and calcia-stabilized zirconia at 1550oC [J]. J. Am. Ceram. Soc., 2010, 93: 3893
doi: 10.1111/j.1551-2916.2010.03946.x
42 Lin C C, Chang Y W, Lin K L, et al. Effect of yttria on interfacial reactions between titanium melt and hot-pressed yttria/zirconia composites at 1700oC [J]. J. Am. Ceram. Soc., 2008, 91: 2321
doi: 10.1111/j.1551-2916.2008.02428.x
43 Chen Z Y. Phase Diagrams of Refractories [M]. Beijing: Metallurgical Industry Press, 2014: 32
43 陈肇友. 相图与耐火材料 [M]. 北京: 冶金工业出版社, 2014: 32
44 Kishimoto Y, Utada S, Iguchi T, et al. Desulfurization model using solid CaO in molten Ni-based superalloys containing Al [J]. Metall. Mater. Trans., 2020, 51B: 293
45 Kumar G, Prabhu K N. Review of non-reactive and reactive wetting of liquids on surfaces [J]. Adv. Colloid Interface Sci., 2007, 133: 61
doi: 10.1016/j.cis.2007.04.009
46 Wan C, Kritsalis P, Drevet B, et al. Optimization of wettability and adhesion in reactive nickel-based alloys/alumina systems by a thermodynamic approach [J]. Mater. Sci. Eng., 1996, A207: 181
47 Sadrnezhad S K, Raz S B. Interaction between refractory crucible materials and the melted NiTi shape-memory alloy [J]. Metall. Mater. Trans., 2005, 36B: 395
48 Zhang T, Wei Y W, Chen J F, et al. Preparation of CaO-MgO-ZrO2 refractory and its desulfurization effect on Ni-based alloy in vacuum induction melting (VIM) [J]. J. Aust. Ceram. Soc., 2020, 56: 885
doi: 10.1007/s41779-019-00421-8
49 Gao X Y, Zhang L, Qu X H, et al. Effect of interaction of refractories with Ni-based superalloy on inclusions during vacuum induction melting [J]. Int. J. Miner. Metall. Mater., 2020, 27: 1551
doi: 10.1007/s12613-020-2098-9
50 Durov A V, Naidich Y V, Kostyuk B D. Investigation of interaction of metal melts and zirconia [J]. J. Mater. Sci., 2005, 40: 2173
doi: 10.1007/s10853-005-1928-5
51 Zi Y, Meng J, Zhang C W, et al. Effect of Y content on interface reaction and wettability between a nickel-base single crystal superalloy melt and ceramic mould [J]. J. Alloys Compd., 2019, 789: 472
doi: 10.1016/j.jallcom.2019.03.037
52 Liu Q M, Huang S Z, Liu F, et al. Effect of boron content on microstructure evolution during solidification and mechanical properties of K417G alloy [J]. Acta Metall. Sin., 2019, 55: 720
52 刘巧沐, 黄顺洲, 刘 芳 等. B含量对K417G合金凝固过程中组织演变和力学性能的影响 [J]. 金属学报, 2019, 55: 720
53 Tetsui T, Kobayashi T, Mori T, et al. Evaluation of yttria applicability as a crucible for induction melting of TiAl alloy [J]. Mater. Trans., 2010, 51: 1656
doi: 10.2320/matertrans.MAW201002
54 Li J P, Zhang H R, Gao M, et al. Effect of vacuum level on the interfacial reactions between K417 superalloy and Y2O3 crucibles [J]. Vacuum, 2020, 182: 109701
doi: 10.1016/j.vacuum.2020.109701
55 Ye D L, Hu J H. Thermodynamic Data Sheet of Practical Inorganic [M]. 2nd Ed., Beijing: Metallurgical Industry Press, 2002: 1
55 叶大伦, 胡建华. 实用无机物热力学数据手册 [M]. 第 2版, 北京: 冶金工业出版社, 2002: 1
56 Chen X Y, Jin Z, Bai X F, et al. Effect of C on the interfacial reaction and wettability between a Ni-based superalloy and ceramic mould [J]. Acta Metall. Sin., 2015, 51: 853
56 陈晓燕, 金 喆, 白雪峰 等. C对一种镍基高温合金与陶瓷型壳界面反应及润湿性的影响 [J]. 金属学报, 2015, 51: 853
[1] 张德印, 郝旭, 贾宝瑞, 吴昊阳, 秦明礼, 曲选辉. Y2O3 含量对燃烧合成Fe-Y2O3 纳米复合粉末性能的影响[J]. 金属学报, 2023, 59(6): 757-766.
[2] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[3] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[4] 高运明, 何林, 秦庆伟, 李光强. 利用ZrO2 固体电解质研究Na3AlF6-SiO2 熔盐中的电沉积[J]. 金属学报, 2022, 58(10): 1292-1304.
[5] 王超, 张旭, 王玉敏, 杨青, 杨丽娜, 张国兴, 吴颖, 孔旭, 杨锐. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020, 56(9): 1275-1285.
[6] 宋芊汀, 徐映坤, 徐坚. (TiZrNbTa)90Mo10高熵合金与Al2O3干摩擦条件下的滑动磨损行为[J]. 金属学报, 2020, 56(11): 1507-1520.
[7] 张志杰, 黄明亮. 原位研究Cu/Sn-37Pb/Cu微焊点液-固电迁移行为[J]. 金属学报, 2020, 56(10): 1386-1392.
[8] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[9] 金永丽,于海,张捷宇,赵增武. 磁场对含CaO铁氧化物还原的影响[J]. 金属学报, 2019, 55(3): 410-416.
[10] 冯业飞,周晓明,邹金文,王超渊,田高峰,宋晓俊,曾维虎. 粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J]. 金属学报, 2019, 55(11): 1437-1447.
[11] 邱丰, 佟昊天, 沈平, 丛晓霜, 王轶, 姜启川. 综述:SiC/Al界面反应与界面结构演变规律及机制[J]. 金属学报, 2019, 55(1): 87-100.
[12] 郭策安, 陈明辉, 廖依敏, 苏北, 谢冬柏, 朱圣龙, 王福会. 模拟燃气热冲击条件下搪瓷基复合涂层的防护机理研究[J]. 金属学报, 2018, 54(12): 1825-1832.
[13] 赵宁,邓建峰,钟毅,殷录桥. 热迁移下Ni/Sn-xCu/Ni微焊点钎焊界面金属间化合物的演变[J]. 金属学报, 2017, 53(7): 861-868.
[14] 张志杰,黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究[J]. 金属学报, 2017, 53(5): 592-600.
[15] 靳鹏,隋然,李富祥,俞伟元,林巧力. 熔融6061/4043铝合金在TC4钛合金表面的反应润湿[J]. 金属学报, 2017, 53(4): 479-486.