Please wait a minute...
金属学报  2015, Vol. 51 Issue (7): 828-834    DOI: 10.11900/0412.1961.2014.00610
  本期目录 | 过刊浏览 |
Zr添加对NiAl/Cr(Mo)基共晶合金微观组织和力学性能的影响*
盛立远1(),郭建亭2,赖琛1,奚廷斐1
2 中国科学院金属研究所, 沈阳110016
EFFECT OF Zr ADDITION ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF NiAl/Cr(Mo) BASE EUTECTIC ALLOY
Liyuan SHENG1(),Jianting GUO2,Chen LAI1,Tingfei XI1
1 Shenzhen Key Laboratory of Human Tissue Regeneration and Repair, Shenzhen Institute, Peking University, Shenzhen 518057
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(5253 KB)   HTML
摘要: 

研究了Zr的添加对含Ti和Hf的NiAl/Cr(Mo)基共晶合金微观组织及压缩性能的影响. 结果表明, 少量Zr的添加会显著细化合金共晶胞内的NiAl/Cr(Mo)层片, 优化共晶胞界区域的NiAl和Cr(Mo)相尺寸; 随着Zr含量的增加, 共晶胞界的NiAl和Cr(Mo)相明显粗化, 且共晶胞界的Heusler相呈半连续状分布; 当Zr的含量增加至1% (原子分数)时, 共晶胞界的Heusler相形成连续的网状, 且有粗大的富Cr相形成. Zr的添加促进了合金中NiAl和Cr(Mo)相中粗大b-NiAl和a-Cr相的析出, 且Heusler相形成元素在析出相界面的偏聚导致了大量界面位错的形成. 此外, Zr的添加导致了细小Heusler颗粒在NiAl相中的析出. 适量Zr的添加可显著提高Ni-33Al-28Cr-5.5Mo-1.0Ti-0.3Hf共晶合金的室温和高温压缩强度, 且几乎不降低其压缩塑性, 较多Zr的添加会降低合金的压缩塑性.

关键词 NiAl/Cr(Mo)基共晶合金ZrHeusler相微观组织压缩性能    
Abstract

NiAl base eutectic alloy is an attractive material and promising to use in high temperature environment. However, the inadequate high temperature strength limits its application. In order to improve its strength, Zr was added in the Ti and Hf doped NiAl/Cr(Mo) base eutectic alloys and the effect of Zr addition on microstructure and mechanical properties of the eutectic alloy was investigated in this work. The results show that small addition of Zr can refine the NiAl/Cr(Mo) lamella inside the eutectic cell and optimize NiAl and Cr(Mo) phase morphology in the intercellular zone. Moreover, the Zr addition promotes the precipitation of bulk Heusler phase along eutectic cell boundary. With the increase of Zr addition, the eutectic cell of the alloys becomes fine, but the NiAl and Cr(Mo) phases in the intercellular zone become coarse and the Heusler phases exhibits semi-continuously distribution along the eutectic cell boundary. When the Zr content increases to 1% (atomic fraction), the NiAl and Cr(Mo) phases in eutectic cell and intercellular zone are all coarsened obviously. Additionally, coarse Cr-rich phases precipitate in the intercellular zone and Heusler phase forms the continuous network along eutectic cell boundary. The addition of Zr promotes the precipitation of coarse b-NiAl and a-Cr phase in Cr(Mo) phase and NiAl phases, respectively. Moreover, the segregation of Heusler phase forming elements along the precipitate interface leads to the formation of a large number of interfacial dislocations. In addition, the addition of Zr results in the precipitation of fine Heusler particles in NiAl phase. It is shown that appropriate addition of Zr can improve the compression strength of Ni-33Al-28Cr-5.5Mo-1.0Ti-0.3Hf eutectic alloys significantly at room temperature and high temperature without reducing its compression plasticity, but more addition of Zr reduces the compressive plastic of the alloy inevitably.

Key wordsNiAl/Cr(Mo) base eutectic alloy    Zr    Heusler phase    microstructure    compressive property
    
基金资助:*深圳市新兴产业基础研究项目JCYJ20140419114548515和JCYJ20130402172114948, 深圳市联合创新国际合作项目GJHZ20140419114548516及深圳市技术开发项目CXZZ20140731091722497资助

引用本文:

盛立远,郭建亭,赖琛,奚廷斐. Zr添加对NiAl/Cr(Mo)基共晶合金微观组织和力学性能的影响*[J]. 金属学报, 2015, 51(7): 828-834.
Liyuan SHENG, Jianting GUO, Chen LAI, Tingfei XI. EFFECT OF Zr ADDITION ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF NiAl/Cr(Mo) BASE EUTECTIC ALLOY. Acta Metall Sin, 2015, 51(7): 828-834.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2014.00610      或      https://www.ams.org.cn/CN/Y2015/V51/I7/828

图1  Ni-33Al-28Cr-5.5Mo-1.0Ti-0.3Hf-xZr (A1~A4)合金的 SEM像
Alloy Phase Ni Al Cr Mo Ti Hf Zr
Al NiAl 46.74 45.56 4.01 0.98 2.18 0.53 0
Cr(Mo) 8.04 9.53 70.62 11.73 0.06 0.01 0
Heusler 45.12 24.81 4.48 2.12 4.40 19.07 0
A2 NiAl 47.17 45.70 3.51 0.53 2.11 0.42 0.56
Cr(Mo) 7.13 10.94 68.46 13.26 0.09 0.01 0. 10
Heusler 44.27 22.26 5.66 1.89 4.10 14.92 6.90
A3 NiAl 46.97 45.67 4.06 0.41 1.90 0.34 0.65
Cr(Mo) 6.64 8.34 72.71 12.10 0.08 0.01 0.12
Heusler 45.42 22.96 4.13 1.99 3.80 12.78 8.92
A4 NiAl 46.79 46.43 3.97 0.22 1.75 0.12 0.72
Cr(Mo) 6.15 8.14 72.93 12.58 0.07 0.01 0.10
Heusler 45.90 22.85 3.27 1.28 3.20 9.90 13.60
表1  A1~A4合金中各相元素成分的EPMA分析结果
图2  A1和A4合金的XRD谱
图3  A2合金中的Heusler相和(Ti, Hf, Zr)固溶体(Ti, Hf, Zr)ss的SEM像, TEM像和SAED谱
图4  A1合金的TEM像
图5  A4合金中析出颗粒的TEM像
Alloy Temperature Yield Compressive Compressive
strain / %
strength / MPa strength / MPa
A1 RT 1401 1739 17
1273 K 330 420 >35
A2 RT 1485 1975 12
1273 K 410 550 >35
A3 RT 1530 2265 16
1273 K 440 575 >35
A4 RT 1494 1995 7
1273 K 420 510 >35
表2  A1~A4合金在室温和1273 K下的压缩性能
[1] Ye H Q. Met Powder Rep, 1997; 51: 36
[2] Guo J T. Ordered Intermetallic Compound NiAl Alloy. Beijing: Science Press, 2003: 104 (郭建亭. 有序金属间化合物NiAl. 北京: 科学出版社, 2003: 104)
[3] Miracle D B. Acta Metall Mater, 1993; 41: 649
[4] Sheng L Y, Xie Y, Xi T F, Guo J T, Zheng Y F, Ye H Q. Mater Sci Eng, 2011; A528: 8324
[5] Yang J M, Jeng S M, Bain K, Amato R A. Acta Mater, 1997; 45: 295
[6] Sheng L Y, Yang F, Xi T F, Zheng Y F, Guo J T. Trans Nonferrous Met Soc China, 2013; 23: 983
[7] Seemüller C, Heilmaier M, Haenschke T, Bei H, Dlouhy A, George E P. Intermetallics, 2013; 35: 110
[8] Sheng L Y, Yang F, Guo J T, Xi T F, Ye H Q. Compos Part Eng, 2013; 45E: 785
[9] Chen X F, Johnson D R, Noebe R D, Oliver B F. J Mater Res, 1995; 10: 1159
[10] Sheng L Y, Guo J T, Ren W L, Zhang Z X, Ren Z M, Ye H Q. Intermetallics, 2011; 19: 143
[11] Whittenberger D J, Noebe R D, Joslin S M, Oliver B F. Intermetallics, 1999; 7: 627
[12] Sheng L Y, Yang F, Guo J T, Xi T F. Trans Nonferrous Met Soc China, 2014; 24: 673
[13] Sheng L Y, Yang F, Xi T F, Lai C, Guo J T. Mater Res Innov, 2013; 17(suppl): S101
[14] Tang L Z, Zhang Z G, Li S S, Gong S K. Trans Nonferrous Met Soc China, 2010; 20: 212
[15] Sheng L Y, Zhang W, Guo J T, Ye H Q. Mater Charact, 2009; 60: 1311
[16] Golberg D, Sauthoff G. Intermetallics, 1996; 4: 253
[17] Hagihara K, Sugino Y, Umakoshi Y. Intermetallics, 2006; 14: 1326
[18] Sheng L Y, Guo J T, Zhou L Z, Ye H Q. Mater Sci Eng, 2009; A500:238
[19] Frommeyer G, Rablbauer R, Sch?fer H J. Intermetallics, 2010; 18: 299
[20] Sheng L Y, Zhang W, Guo J T, Zhou L Z, Ye H Q. Intermetallics, 2009; 17: 1115
[21] Sheng L Y, Nan L, Zhang W, Guo J T, Ye H Q. J Mater Eng Perform, 2010; 19: 732
[22] Sheng L Y, Zhang W, Lai C, Guo J T, Xi T F, Ye H Q. Acta Metall Sin, 2013; 11: 1318 (盛立远, 章 炜, 赖 琛, 郭建亭, 奚廷斐, 叶恒强. 金属学报, 2013; 11: 1318)
[23] Chen Y X, Cui C Y, Guo J T, Li D X. Mater Sci Eng, 2004; A373: 279
[24] Shang Z, Shen J, Wang L, Du Y J, Xiong Y L, Fu H Z. Intermetallics, 2015; 57: 25
[25] Sheng L Y, Yang F, Xi T F, Guo J T, Ye H Q. Mater Sci Eng, 2012; A555: 131
[26] Li H T, Guo J T, Ye H Q. Mater Sci Eng, 2007; A452-453: 763
[27] Sheng L Y, Wang L J, Xi T F, Zheng Y F, Ye H Q. Mater Des, 2011; 32: 4810
[28] Sheng L Y, Yang F, Xi T F, Zheng Y F, Guo J T. Intermetallics, 2012; 27: 4
[29] Bei H, George E P. Acta Mater, 2005; 53: 69
[30] Sheng L Y, Guo J T, Xi T F, Zhang B C, Ye H Q. Prog Nat Sci, 2012; 22: 231
[1] 刘震鹏, 闫志巧, 陈峰, 王顺成, 龙莹, 吴益雄. 金刚石工具用Cu-10Sn-xNi合金的制备和性能表征[J]. 金属学报, 2020, 56(5): 760-768.
[2] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[3] 马晋遥,王晋,赵云松,张剑,张跃飞,李吉学,张泽. 一种第二代镍基单晶高温合金1150 ℃原位拉伸断裂机制研究[J]. 金属学报, 2019, 55(8): 987-996.
[4] 李玲,姚生莲,赵晓丽,杨佳佳,王野熹,王鲁宁. 阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究[J]. 金属学报, 2019, 55(8): 1008-1018.
[5] 蓝春波,梁家能,劳远侠,谭登峰,黄春艳,莫羡忠,庞锦英. 冷轧态Ti-35Nb-2Zr-0.3O合金的异常热膨胀行为[J]. 金属学报, 2019, 55(6): 701-708.
[6] 刘耀鸿,王朝辉,刘轲,李淑波,杜文博. Er对Mg-5Zn-xEr镁合金热裂敏感性的影响[J]. 金属学报, 2019, 55(3): 389-398.
[7] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[8] 杨高林, 林鑫, 卢献钢. 激光多次熔凝Zr55Cu30Al10Ni5非晶合金的晶化形态与演化机理[J]. 金属学报, 2019, 55(12): 1544-1550.
[9] 姚彦桃, 陈礼清, 王文广. 原位反应浸渗法制备(B4C+Ti)混杂增强Mg及AZ91D复合材料及其阻尼性能[J]. 金属学报, 2019, 55(1): 141-148.
[10] 陶然, 赵玉涛, 陈刚, 怯喜周. 电磁场下原位合成纳米ZrB2 np/AA6111复合材料组织与性能研究[J]. 金属学报, 2019, 55(1): 160-170.
[11] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[12] 李淑波, 杜文博, 王旭东, 刘轲, 王朝辉. Zr对Mg-Gd-Er合金晶粒细化机理的影响[J]. 金属学报, 2018, 54(6): 911-917.
[13] 李金富, 周尧和. 液态金属深过冷快速凝固过程中初生固相的重熔[J]. 金属学报, 2018, 54(5): 627-636.
[14] 康慧君, 李金玲, 王同敏, 郭景杰. 定向凝固Al-Mn-Be合金初生金属间化合物相生长行为及力学性能[J]. 金属学报, 2018, 54(5): 809-823.
[15] 翟斌, 周凯, 吕鹏, 王海鹏. 自由落体条件下Ti-6Al-4V合金微液滴的快速凝固研究[J]. 金属学报, 2018, 54(5): 824-830.