Please wait a minute...
金属学报  2015, Vol. 51 Issue (3): 307-314    DOI: 10.11900/0412.1961.2014.00295
  本期目录 | 过刊浏览 |
脉冲磁化处理对M42高速钢刀具组织和力学性能的影响
马利平, 梁志强(), 王西彬, 赵文祥, 焦黎, 刘志兵
北京理工大学先进加工技术国防重点学科实验室, 北京 100081
INFLUENCE OF PULSED MAGNETIC TREATMENT ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF M42 HIGH SPEED STEEL TOOL
MA Liping, LIANG Zhiqiang(), WANG Xibin, ZHAO Wenxiang, JIAO Li, LIU Zhibing
Key Laboratory of Fundamental Science for Advanced Machining, Beijing Institute of Technology, Beijing 100081
引用本文:

马利平, 梁志强, 王西彬, 赵文祥, 焦黎, 刘志兵. 脉冲磁化处理对M42高速钢刀具组织和力学性能的影响[J]. 金属学报, 2015, 51(3): 307-314.
Liping MA, Zhiqiang LIANG, Xibin WANG, Wenxiang ZHAO, Li JIAO, Zhibing LIU. INFLUENCE OF PULSED MAGNETIC TREATMENT ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF M42 HIGH SPEED STEEL TOOL[J]. Acta Metall Sin, 2015, 51(3): 307-314.

全文: PDF(8503 KB)   HTML
摘要: 

对M42高速钢刀具进行脉冲磁化处理, 考察脉冲磁场对组织和性能的影响, 分析了脉冲磁场改变微观组织以及力学性能作用机理. 运用TEM和激光共聚焦显微镜分析了脉冲磁场冲击前后高速钢位错组态、碳化物分布以及微观组织的变化. 研究表明, 高速钢经脉冲磁化处理后, 发生晶格畸变, 基体内析出大量弥散碳化物, 微观组织变细密, 晶粒细化. 微观组织的变化导致力学性能发生变化, 材料Rockwell硬度与显微硬度均显著提高, Rockwell硬度最大可以增加2.9 HRC. 基于位错理论分析了脉冲磁场作用下高速钢的强化机制, 磁场作用于位错的力足以克服位错线张力引起的阻力和晶格点阵引起的阻力, 从而使位错能以Orowan机制产生增殖、滑移, 致使位错密度增加.

关键词 脉冲磁化处理高速钢组织演变位错强化    
Abstract

Magnetic treatment of tools is a novel method to increase tool life in which the tool is magnetized before cutting or the cutting is performed in a magnetic field. The method has many attractive features, such as short treatment time and no pollution. However, this approach has not been widely applied yet, since the mechanism of magnetic treatment of tools is not clear and treatment results are affected by many factors. Therefore, it is important to study the mechanism of magnetic treatment of tools. This work aims to study the influence of pulsed magnetic treatment on microstructures and mechanical properties of M42 (W2Mo9Cr4VCo8) high speed steel, which is a typical tool material which contains high amounts of cobalt. So it can show a stronger magnetism in the process of pulsed magnetic treatment. Changes of dislocation configuration, carbide distribution and microstructure before and after magnetic treatment were characterized by TEM and laser scanning confocal microscope. Moreover, Rockwell hardness and micro-hardness were measured to quantitatively investigate the influence of magnetic treatment on the mechanical properties. Results showed that after pulsed magnetic treatment the lattice of material was distorted, the carbide was precipitated, and the microstructure and crystalline grain were refined. The changes of microstructure led to changes of mechanical properties, of which the Rockwell hardness and micro-hardness were significantly increased. The maximum increase of Rockwell hardness was 2.9 HRC. Ultimately, the strengthening mechanisms of high speed steel were analyzed based on dislocation theory. It was shown that the subjected force of dislocations due to the magnetic treatment could overcome the centripetal restoring force and the Peierls stress of dislocations. Therefore, dislocations proliferated by the Orowan dislocation strengthening mechanism, and dislocation density increased. The dislocation configuration determined from TEM micrographs was in good agreement with the discussion of dislocation mechanisms.

Key wordspulsed magnetic treatment    high speed steel    microstructure evolution    dislocation strengthening
    
ZTFLH:  TG156  
基金资助:*国家自然科学基金项目50935001和51205024资助
作者简介: null

马利平, 男, 1984年生, 博士生

图1  脉冲磁化处理系统示意图
图2  脉冲磁化处理前后M42高速钢位错组态的TEM像
图3  铁磁材料磁畴结构示意图
图4  脉冲磁场处理后M42高速钢的HRTEM像
图5  脉冲磁化处理前后M42高速钢中碳化物的低倍形貌
图6  脉冲磁化处理前后M42高速钢中碳化物的高倍形貌
图7  脉冲磁化处理前后M42高速钢的微观组织
图8  脉冲磁化处理对M42高速钢Rockwell硬度的影响
图9  脉冲磁化处理对M42高速钢显微硬度的影响
图10  M42高速钢表面温度随脉冲磁化处理时间的变化
图11  磁场中位错受力分析
图12  Orowan位错强化机制示意图和位错环的TEM像
[1] Li G R, Zhao Y T, Dai Q X, Zhang H J, Wang H M. J Univ Sci Technol Beijing, 2007; 14: 460
[2] Miller P C. Tool Prod, 1990; 55: 100
[3] Batainech O, Klamecki B, Koepke B G. J Mater Process Technol, 2003; 134: 190
[4] E1 Mansori M, Pierron F, Paulmier D. Surf Coat Technol, 2003; 163: 472
[5] E1 Mansori M, Lordache V, Seitier P, Paulmier D. Surf Coat Technol, 2004; 188: 566
[6] Mkaddem A, Benabou A, E1 Mansori M, Clenet S. Int J Solids Struct, 2013; 50: 2078
[7] E1 Mansori M, Schmitt M, Paulmier D. Surf Coat Technol, 1998; 108-109: 479
[8] E1 Mansori M, Paulmier D. Appl Surf Sci, 1999; 144-145: 233
[9] Chin K J, Zaidi H, Nguyen M T, Renault P O. Wear, 2001; 250: 470
[10] Chin K J, Zaidi H, Mathia T. Wear, 2005; 259: 477
[11] Singh S, Shan H S, Kumar P. J Mater Process Technol, 2002; 128: 155
[12] Klamecki B E. J Mater Process Technol, 2003; 141: 385
[13] Tang F, Lu A L, Fang H Z, Mei J F. Mater Sci Eng, 1998; A248: 98
[14] Cai Z P, Huang X Q. Mater Sci Eng, 2011; A528: 6287
[15] Zaidi H, Pan L, Paulmier D, Robert F. Wear, 1995; 181: 799
[16] Jiang J L, Tian Y, Meng Y G. Wear, 2011; 271: 2991
[17] Fahmy Y, Hare T, Tooke R, Conrad H. Scr Mater, 1998; 38: 1355
[18] Bose M S C. Phys Status Solidi, 1984; 86A: 649
[19] Zhong W D. Ferromagnetics. Beijing: Science Press, 1987: 7
[19] (钟文定.铁磁学. 北京: 科学出版社, 1987: 7)
[20] Li G R, Wang H M, Yuan X T, Cai Y. Chin J Mater Res, 2013; 27: 397
[20] (李桂荣, 王宏明, 袁雪婷, 蔡 云. 材料研究学报, 2013; 27: 397)
[21] Lei T Q,Yao Z K,Yang D Z. Thermomechanical Treatment of Steel. Beijing: China Machine Press, 1979: 135
[21] (雷廷权,姚忠开,杨德庄. 钢的形变热处理. 北京: 机械工业出版社, 1979: 135)
[22] Xu B J, Gu N J, Yan D R, Yin F X. Acta Metall Sin, 1989; 25: 352
[22] (徐伯钧, 谷南驹, 阎殿然, 殷福星. 金属学报, 1989; 25: 352)
[23] Sun Z J. Heat Treat, 2002; 17(1): 37
[23] (孙忠继. 热处理, 2002; 17(1): 37 )
[24] Ferreira P J, Vander S J B. Scr Mater, 1999; 41: 117
[25] Wang Y N,Chen S J,Dong X C. Dislocation Theory and its Applications. Beijing: Metallurgical Industry Press, 2007: 35
[25] (王亚男,陈树江,董希淳. 位错理论及其应用. 北京: 冶金工业出版社, 2007: 35)
[26] Li H Q, Chen Q Z, Wang Y B, Chu W Y. Chin Sci Bull, 1997; 42: 2282
[26] (李红旗, 陈奇志, 王燕斌, 褚武扬. 科学通报, 1997; 42: 2282)
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[4] 刘继浩, 周健, 武会宾, 马党参, 徐辉霞, 马志俊. 喷射成形M3高速钢偏析成因及凝固机理[J]. 金属学报, 2023, 59(5): 599-610.
[5] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[6] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[7] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[8] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[9] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[10] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
[11] 刘超, 姚志浩, 郭婧, 彭子超, 江河, 董建新. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律[J]. 金属学报, 2021, 57(12): 1549-1558.
[12] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[13] 吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.
[14] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[15] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.