Please wait a minute...
金属学报  2015, Vol. 51 Issue (3): 298-306    DOI: 10.11900/0412.1961.2014.00421
  本期目录 | 过刊浏览 |
核级低合金钢高温水腐蚀疲劳机制及环境疲劳设计模型
吴欣强1,2(), 谭季波1,2, 徐松1,2, 韩恩厚1,2, 柯伟1,2
1 中国科学院金属研究所核用材料与安全评价重点实验室, 沈阳 110016
2 中国科学院金属研究所辽宁省核电材料安全与评价技术重点实验室, 沈阳 110819
CORROSION FATIGUE MECHANISM OF NUCLEAR-GRADE LOW ALLOY STEEL IN HIGH TEMPERATURE PRESSURIZED WATER AND ITS ENVIRONMENTAL FATIGUE DESIGN MODEL
WU Xinqiang1,2(), TAN Jibo1,2, XU Song1,2, HAN En-Hou1,2, KE Wei1,2
1 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 Liaoning Key Laboratory for Safety and Assessment Technique of Nuclear Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

吴欣强, 谭季波, 徐松, 韩恩厚, 柯伟. 核级低合金钢高温水腐蚀疲劳机制及环境疲劳设计模型[J]. 金属学报, 2015, 51(3): 298-306.
Xinqiang WU, Jibo TAN, Song XU, En-Hou HAN, Wei KE. CORROSION FATIGUE MECHANISM OF NUCLEAR-GRADE LOW ALLOY STEEL IN HIGH TEMPERATURE PRESSURIZED WATER AND ITS ENVIRONMENTAL FATIGUE DESIGN MODEL[J]. Acta Metall Sin, 2015, 51(3): 298-306.

全文: PDF(6558 KB)   HTML
摘要: 

通过模拟核电高温高压循环水腐蚀疲劳实验, 研究了核级低合金钢环境疲劳损伤规律与控制机理, 构建了一个植入环境效应的疲劳设计模型, 给出了便于工程应用的环境疲劳设计曲线, 并建立了核电站实际构件的环境疲劳安全评估流程, 给出了尝试实施例.

关键词 核级低合金钢高温高压水腐蚀疲劳设计模型环境疲劳安全评估    
Abstract

The service degradation and life assessment of key components in light water reactor nuclear power plants (NPPs) mainly depend on the accumulation of service property data of component materials, understanding of environmental degradation mechanism, and construction of evaluation models or methods. The current ASME design fatigue code does not take full account of the interactions of environmental, loading and material's factors. In the present work, based on the corrosion fatigue tests in simulated NPPs' high temperature pressurized water, the environmental fatigue behavior and dominant mechanism of nuclear-grade low alloy steel have been investigated. A design fatigue model was constructed by taking environmentally assisted fatigue effects into account and the corresponding design curves were given for the convenience of engineering applications. The process for environmental fatigue safety assessment of NPPs' components was proposed, based on which some tentative assessment cases have been given.

Key wordsnuclear-grade low alloy steel    high temperature pressurized water    corrosion fatigue    design model    environmental fatigue safety assessment
    
ZTFLH:  TG172  
基金资助:* 国家重点基础研究发展计划项目2011CB610506和国家科技重大专项项目2011ZX06004-009资助
作者简介: null

吴欣强, 男, 1971年生, 研究员

图1  国产核级低合金钢SA508-III在高温高压水中的腐蚀疲劳寿命
图2  核级低合金钢表面疲劳裂纹形貌
图3  核级低合金钢疲劳断口形貌[3]
图4  核级低合金钢(SA508-III和A533B)在空气中的最佳拟合曲线和误差分析
图5  核级低合金钢(SA508-III和A533B)高温高压水腐蚀疲劳寿命影响因素
图6  核级低合金钢(SA508-III和A533B)的环境疲劳设计曲线
图7  核电站实际构件的环境疲劳寿命评估流程
Salt / MPa T / ℃ ˙ε / %s-1 Design cycle / cyc NASME Uair Nenv Uenv
567.2 200 0.028 120 1024 0.1172 92 1.304
500.6 0.026 1429 0.0630 142 0.634
444.1 200 0.026 142 1967 0.0722 231 0.615
268.8 200 0.002 555 9272 0.0599 2191 0.253
201.9 200 0.001 10 23830 0.0004 7149 1.40×10-3
143.8 200 0.001 120 81350 0.0015 88833 1.35×10-3
132.4 200 0.001 98 115630 0.0008 231742 4.23×10-4
121.1 200 0.001 10 159810 0.0001 703538 1.42×10-5
120.2 288 0.001 10 163810 0.0001 777252 1.29×10-5
95.5 288 0.001 222 444850 0.0005 1000000 2.22×10-4
92.6 200 0.001 666 523970 0.0013 1000000 6.66×10-4
91.9 288 0.001 120 560450 0.0002 1000000 1.20×10-4
Total 0.317 Total 2.81
表1  某沸水堆碳钢给水管的安全端疲劳损伤评价 [29~31]
Transient Design basis cycle Anticipated cycle for 40 a Anticipated cycle for 60 a
Heatup 500 90 135
Cooldown 500 90 135
Reactor trip 480 150 225
Loss of letdown 100 40 60
Loss of charging 100 12 18
Safety injection test 260 100 150
Leak test 260 115 173
表2  典型运行瞬态的总设计周次、40 a和60 a的周次 [31]
Load pair Salt Nenv 40 a 60 a
N40 U40 N60 U60
Cooldown/plant load 416.6 1458 90 0.062 135 0.093
Leak test/plant unload 330.8 1534 200 0.130 300 0.196
Heatup/plant load 270.4 4263 90 0.021 135 0.032
Plant load/unload 143.6 58406 14620 0.250 21930 0.375
Plant unload/upset 136.6 73899 480 0.007 720 0.010
Plant undload/OBE 98.7 265677 200 0.001 300 0.001
Plant unload/step load 87.6 729360 520 0.001 780 0.001
Total 0.472 Total 0.708
表3  某压水堆进水管嘴的疲劳延寿评估[31]
[1] Cahn R W, Haasen P, Kramer E J. Materials Science and Technology 10B: Nuclear Materials. Germany: VCH, 1994: 38
[2] Wu X Q, Han E H, Ke W, Katada Y. Nucl Eng Des, 2007; 237: 1452
[3] Wu X Q, Katada Y. Corros Sci, 2005; 47: 1415
[4] Raman S G S, Kitsunai Y. Eng Fail Anal, 2004; 11: 293
[5] Chopra O K, Shack W J. ASME PVP, 2003; 453: 71
[6] Chopra O K, Shack W J. Nucl Eng Des, 1998; 184: 49
[7] Higuchi M, Iida K, Asada Y. ASTM STP, 1997; 1298: 216
[8] Regulatory Guide 1.207. Washington D C,USA: Nuclear Regulatory Commission, Office of Nuclear Regulatory Research Guide 1.207. Washington D C, USA: Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, 2007: 5
[9] Srikantiah G. TR-107263, EPRI Report, 1996
[10] Chopra O K, Shack W J. NUREG/CR-6909. Washington D C, USA: Nuclear Regulatory Commission, 2007
[11] JNES-SS-1005 Report. Nuclear Energy System Safety Division, Japan Nuclear Energy Safety Organization, 2011
[12] 2004 ASME Boiler Pressure Vessel Code Section III. New York: The American Society of Mechanical Engineers , 2004
[13] Kuang W J, Wu X Q, Han E H. Chin Pat, 200810012594.2, 2010
[13] (匡文军, 吴欣强, 韩恩厚. 中国专利, 200810012594.2, 2010)
[14] Kuang W J, Wu X Q, Han E H. Chin Pat, 200810230396.3, 2011
[14] (匡文军, 吴欣强, 韩恩厚. 中国专利, 200810230396.3, 2011)
[15] Kuang W J, Wu X Q, Han E H. Chin Pat, 200910011110.7, 2012
[15] (匡文军, 吴欣强, 韩恩厚. 中国专利, 200910011110.7, 2012)
[16] Xu S, Wu X Q, Han E H, Ke W. Chin Pat, 201010240911.3, 2013
[16] (徐 松, 吴欣强, 韩恩厚, 柯 伟. 中国专利, 201010240911.3, 2013)
[17] Xu S, Wu X Q, Han E H, Ke W. Chin Pat, 201010240899.6, 2013
[17] (徐 松, 吴欣强, 韩恩厚, 柯 伟. 中国专利, 201010240899.6, 2013)
[18] Hänninen H, Cullen W, Kemppainen M. Corrosion, 1990; 46: 563
[19] Kuniya J, Anzai H, Masaoka I. Corrosion, 1992; 48: 419
[20] Atkinson J D, Yu J. Fatigue Fract Eng Mater Struct, 1997; 20: 1
[21] Chopra O K,Shack W J. J Pressure Vessel Technol Trans ASME, 1999; 121: 49
[22] Ford F P. Corrosion, 1996; 52: 375
[23] Maiya P S. J Pressure Vessel Technol Trans ASME, 1987; 109: 116
[24] Wu X Q, Kim I S. Mater Sci Eng, 2003; A348: 309
[25] Scully J C. Corros Sci, 1980; 20: 997
[26] Wu X Q, Xu S, Han E H, Ke W. Acta Metall Sin, 2011; 47: 790
[26] (吴欣强, 徐 松, 韩恩厚, 柯 伟. 金属学报, 2011; 47: 790)
[27] Langer B F. ASME J Basic Eng, 1962; 84: 389
[28] Miner M A. J App Mech, 1945; 12: 159
[29] Ware A G, Morton D K, Nitzel M E. NUREG/CR-6260. Washington D C, USA : Nuclear Regulatory Commission, 1995
[30] Chopra O K, Shack W J. NUREG/CR-6583. Washington D C, USA : Nuclear Regulatory Commission, 1996
[31] Majumdar S, Chopra O K, Shack W J. NUREG/CR-5999. Washington D C, USA: Nuclear Regulatory Commission, 1993
[1] 林晓冬, 马海滨, 任啟森, 孙蓉蓉, 张文怀, 胡丽娟, 梁雪, 李毅丰, 姚美意. Fe13Cr5Al4Mo合金在高温高压水环境中的腐蚀行为[J]. 金属学报, 2022, 58(12): 1611-1622.
[2] 谭季波, 王翔, 吴欣强, 韩恩厚. 316LN不锈钢管状试样高温高压水的腐蚀疲劳行为[J]. 金属学报, 2021, 57(3): 309-316.
[3] 郦晓慧, 王俭秋, 韩恩厚, 郭延军, 郑会, 杨双亮. 690合金在模拟核电高温高压水中的电化学及原位划伤行为研究[J]. 金属学报, 2020, 56(11): 1474-1484.
[4] 王俭秋, 黄发, 柯伟. Inconel 690TT和Incoloy 800MA蒸汽发生器管材在高温高压水中的腐蚀行为研究*[J]. 金属学报, 2016, 52(10): 1333-1344.
[5] 张利涛,王俭秋. 国产锻造态核级管材316L不锈钢在高温高压水中的应力腐蚀裂纹扩展行为[J]. 金属学报, 2013, 49(8): 911-916.
[6] 郦晓慧 王俭秋 韩恩厚 柯伟. 核级商用690合金和800合金在模拟压水堆核电站一回路高温高压水中的腐蚀行为研究[J]. 金属学报, 2012, 48(8): 941-950.
[7] 吴欣强 徐松 韩恩厚 柯伟. 核级不锈钢高温水腐蚀疲劳机制及环境疲劳设计模型[J]. 金属学报, 2011, 47(7): 790-796.
[8] 韩恩厚. 核电站关键材料在微纳米尺度上的环境损伤行为研究------进展与趋势[J]. 金属学报, 2011, 47(7): 769-776.
[9] 匡文军 吴欣强 韩恩厚. 闭塞区中Ni2+对核级304不锈钢高温水氧化行为的影响[J]. 金属学报, 2011, 47(7): 927-931.
[10] 杨波 李谋成 姚美意 周邦新 沈嘉年. 高温高压水环境中锆合金腐蚀的原位阻抗谱特征[J]. 金属学报, 2010, 46(8): 946-950.
[11] 常; 红; 韩恩厚; 王俭秋; 柯伟 . 阴极极化对LY12CZ铝合金腐蚀疲劳寿命的影响[J]. 金属学报, 2005, 41(5): 556-560 .
[12] 方丙炎; 韩恩厚; 王俭秋; 柯伟 . 应变速率对管线钢近中性pH值环境敏感开裂的影响[J]. 金属学报, 2005, 41(11): 1174-1182 .
[13] 杨继红; 贾维平; 李守新 . [013]取向Cu单晶体在NaCl水溶液中腐蚀疲劳位错结构的观察[J]. 金属学报, 2004, 40(1): 99-102 .
[14] 张波; 张正贵 . LY12CZ铝合金铆接联接件在3.5aCl溶液中的腐蚀疲劳失效行为研究[J]. 金属学报, 2000, 36(8): 842-846 .
[15] 张波; 李劲 . 应力幅对LY12CZ铝合金腐蚀疲劳应变电流响应的影响[J]. 金属学报, 2000, 36(10): 1089-1093 .