Please wait a minute...
金属学报  2012, Vol. 48 Issue (9): 1132-1138    DOI: 10.3724/SP.J.1037.2011.00751
  论文 本期目录 | 过刊浏览 |
Mo含量对TiMoN薄膜微观组织和摩擦磨损性能的影响
许俊华, 鞠洪博, 喻利花
江苏科技大学先进焊接技术江苏省重点实验室, 镇江 212003
EFFECTS OF Mo CONTENT ON THE MICROSTRUCTURE AND FRICTION AND WEAR PROPERTIES OF TiMoN FILMS
XU Junhua, JU Hongbo, YU Lihua
Key Laboratory of Advanced Welding Technology of Jiangsu Province, Jiangsu University of Science and Technology, Zhenjiang 212003
引用本文:

许俊华 鞠洪博 喻利花. Mo含量对TiMoN薄膜微观组织和摩擦磨损性能的影响[J]. 金属学报, 2012, 48(9): 1132-1138.
, , . EFFECTS OF Mo CONTENT ON THE MICROSTRUCTURE AND FRICTION AND WEAR PROPERTIES OF TiMoN FILMS[J]. Acta Metall Sin, 2012, 48(9): 1132-1138.

全文: PDF(3811 KB)  
摘要: 采用射频磁控溅射制备不同Mo含量的TiMoN薄膜. 利用XRD, SEM, EDS, 纳米压痕仪和高温摩擦磨损实验对薄膜的相结构, 形貌, 成分, 力学性能和摩擦磨损性能进行分析. 结果表明, TiMoN薄膜为fcc结构; 当Mo占金属元素总量的比例X<68.37%(原子分数)时, 薄膜主要为Mo在TiN中的置换固溶体; 当X>68.37%时, 薄膜主要为Ti在Mo2N中的置换固溶体; 随Mo含量的增高, 择优取向发生改变, 晶粒尺寸逐渐减小, 薄膜的显微硬度显著升高, 最高达36.37 GPa, 摩擦系数逐渐降低, 并在X达到68.37%后稳定在0.4左右; 不同Mo含量的TiMoN薄膜的磨损率在10-8-10-6 mm2/N之间, 优于TiN薄膜. 基于晶体化学理论,对TiMoN薄膜低摩擦系数的原因进行了讨论.
关键词 射频磁控溅射TiMoN薄膜微观组织摩擦磨损    
Abstract:Over the past years, hard wear resistant TiN coatings deposited by magnetron sputtering have gained increasing importance in the field of decorative and cutting tool coatings. With the ongoing trend to multifunctional operating cutting tools, new solutions in the design of tools are demanded. The alloying of TiN coatings with additional elements, for instance, can effectively enhance hardness, wear resistance and so on. Both TiAlN and TiSiN coatings, well-studied nitride systems, yield superior oxidation resistance, and extend the life of cutting tools by significant margins in comparison with TiN coatings. Numerous research activities focus on TiAlN, TiSiN systems, whereas limited efforts have been made to characterize TiMoN coatings. Low coefficient of friction is a common property in various Mo-containing coatings that can react with oxygen in the air into Magneli phase (MoO3). The effects of Mo alloying on mechanical properties and wear resistance of TiN-based coatings remain to be investigated. TiMoN composite films with various Mo concentrations were deposited using RF reactive magnetron sputtering and characterized by SEM, EDS, XRD, nano-indentation and wearing tester. The results show that TiMoN coatings have fcc structure. When atomic fraction of Mo in total metallic elements (X) is less than 68.37\%, a TiMoN solid solution was formed by dissolution of Mo into the TiN lattice; when X is more than 68.37\%, a TiMoN solid solution was formed by dissolution of Ti into the Mo2N lattice. With Mo contents increase, preferential orientation change, microhardness increase significantly, the coefficient friction and grain size decrease, friction and wear of TiMoN coatings are excellent. Low coefficient friction can be primarily attributed to the formation of lubricious MoO3 on the wear track surface in dry sliding wear conditions. The principles of a crystal chemical model relating the lubricity of complex oxides to their ionic potentials can explain this mechanism.
Key wordsRF reactive magnetron sputtering    TiMoN coatings    microstructure    friction and wear
收稿日期: 2011-12-03     
基金资助:

国家自然科学基金项目51074080和江苏省自然科学基金项目BK2008240 资助

作者简介: 许俊华, 男, 1962年生, 教授, 博士
[1] Yu L H, Dong S R, Xu J H, Li G Y. Acta Phys Sin, 2008; 57: 3607

(喻利花, 董师润, 许俊华, 李戈杨. 物理学报, 2008; 57: 3607)

[2] Hu S B, Cui K. Mater Prot, 2001; 34: 24

[3] Yu L H, Dong S T, Dong S R, Xu J H. Acta Phys Sin, 2008; 57: 5151

(喻利花, 董松涛, 董师润, 许俊华. 物理学报, 2008; 57: 5151)

[4] Hiroyuki H, Koji S, Akihiro M, Kiyotaka K, Hideaki M. J Refrac Mater Hard Mater, 2012

[5] Masatoshi N, Yosuke G, Osamu U, Shinzo O. Catalysis Today, 1998; 43: 249

[6] Ozturk A, Ezirmik K V, Kazmanl? K, Urgen M, Ery?lmaz O L, Erdemir A. Trib Int, 2008; 41: 49

[7] Sarioglu C, Demirler U, Kazmanli M K, Urgen M. Surf Coat Technol, 2005; 190: 238

[8] ¨Urgen M, Eryilmaz O L, Cakir A F, Kayali E S, I ¸sik Y. Surf Coat Technol, 1997; 94–95: 501

[9] Kazmanli M K, ¨urgen M, Cakir A F. Surf Coat Technol, 2003; 167: 77

[10] Kathrein M, Michotte C, Penoy M, Polcik P, Mitterer C. Surf Coat Technol, 2005; 200: 1867

[11] Gassner G, Mayrhofer P H, Kutschej K, Mitterer C, Kathrein M. Surf Coat Technol, 2006; 201: 3335

[12] Sanjines R, Wiemer C, Almeida J, Levy F. Thin Solid Films, 1996; 290–291: 334

[13] Regent F, Musil J. Surf Coat Technol, 2001; 142–144: 146

[14] Jiang C H, Yang C Z. Analysis of Materials by Ray–Diffraction and Scattering. Beijing: Higher Education Press, 2010: 169

(姜传海, 王传铮. 材料射线衍射和散射分析. 北京: 高等教育出版社, 2010: 169)

[15] Yang S C, Li X Y, Cooke K E, Teer D G. Appl Surf Sci, 2011

[16] Abu–Zeid O A, Bates R I. Surf Coat Technol, 1996; 86–87: 256

[17] Sandu C S, Benkahoul M, Sanjine R, Sanjin´es R, L´evy F. Surf Coat Technol, 2006; 201: 2897

[18] NoseM, Deguchi Y, Mae T. Surf Coat Technol, 2003; 174– 175: 261

[19] Birkholz M, Albers U, Jung T. Surf Coat Technol, 2004; 179: 279

[20] Yang Q, Zhao L R, Patnaik P C, Zeng X T. Wear, 2006; 261: 119

[21] Yang S C,Wiemann E, Teer D G. Surf Coat Technol, 2004; 188–189: 662

[22] Urgen M, Eryilmaz O L, Cakir A F, Kayali E S, Nil¨ufer B, Isik Y. Surf Coat Technol, 1997; 94–95: 501

[23] Yang Q, Zhao L R. Surf Coat Technol, 2005; 200: 1709

[24] Walker J C, Ross I M, Reinhard C, Rainforth W M, Hovsepian P E. Wear, 2009; 267: 965

[25] Zhou Z, Rainforth W M, Luo Q, Hovsepian P E, Ojeda J J, Gonzalez M E R. Acta Mater, 2010; 58: 2912

[26] Pfeiler M, Kutschej K, Penoy M, Michotte C. Int J Refr Metal Hard Mater, 2009; 27: 502

[27] Woydt M, Skopp A, Dorfel I, Witke K. Wear, 1998; 218: 84

[28] Erdemir A. Trib Lett, 2000; 8: 97

[29] Gulbi´nskiW, Suszko T, Sienicki W, Warcholi´nski B. Wear, 2003; 254: 129

[30] Blanchet T A, Lauer J L, Liew Y F. Rhee S J, Sawyer W G. Surf Coat Technol, 1994; 68–69: 446

[31] Erdemir A, Erck R A, Fenske G R, Hong H. Wear, 1997; 203–204: 588

[32] Kanakia M, Owens M E, Ling F F. Wear, 1984; 2: 19

[33] Wahl K J, Seitzman L E, Bolster R N, Singer I L, Peterson M B. Surf Coat Technol, 1997; 89: 245
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[3] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[4] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[5] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[6] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[7] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[8] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[9] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[10] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[11] 李会朝, 王彩妹, 张华, 张建军, 何鹏, 邵明皓, 朱晓腾, 傅一钦. 搅拌摩擦增材制造技术研究进展[J]. 金属学报, 2023, 59(1): 106-124.
[12] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[13] 马志民, 邓运来, 刘佳, 刘胜胆, 刘洪雷. 淬火速率对7136铝合金应力腐蚀开裂敏感性的影响[J]. 金属学报, 2022, 58(9): 1118-1128.
[14] 沈岗, 张文泰, 周超, 纪焕中, 罗恩, 张海军, 万国江. 热挤压Zn-2Cu-0.5Zr合金的力学性能与降解行为[J]. 金属学报, 2022, 58(6): 781-791.
[15] 余春, 徐济进, 魏啸, 陆皓. 核级镍基合金焊接材料失塑裂纹研究现状[J]. 金属学报, 2022, 58(4): 529-540.