Please wait a minute...
金属学报  2012, Vol. 48 Issue (9): 1123-1131    DOI: 10.3724/SP.J.1037.2012.00107
  论文 本期目录 | 过刊浏览 |
Mg-Zn-Zr-Ce合金高温变形行为与热加工性能研究
余晖1, 2), KIM Youngmin2), 于化顺1), YOU Bongsun2), 闵光辉1)
1) 山东大学材料科学与工程学院~材料液固结构演变与加工教育部重点实验室, 济南 250061
2) 韩国材料科学研究院轻金属研究组, 昌原 642831
HOT DEFMATION BEHAVIOR AND HOT WORKABILITY OF Mg-Zn-Zr-Ce ALLOY
YU Hui1, 2),  KIM Youngmin2), YU Huashun1), YOU Bongsun2),  MIN Guanghui1)
1) Key Laboratory for Liquid--Solid Evolution and Processing of Materials of Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061
2) ALMG research group, Light metal division, Korea Institute of Materials Science, Changwon 642831, Republic of Korea
引用本文:

余晖 KIM Youngmin 于化顺 YOU Bongsun 闵光辉. Mg-Zn-Zr-Ce合金高温变形行为与热加工性能研究[J]. 金属学报, 2012, 48(9): 1123-1131.
, , , , . HOT DEFMATION BEHAVIOR AND HOT WORKABILITY OF Mg-Zn-Zr-Ce ALLOY[J]. Acta Metall Sin, 2012, 48(9): 1123-1131.

全文: PDF(3331 KB)  
摘要: 采用Gleeble 3800热模拟机对Mg-6Zn-0.5Zr-0.5Ce镁合金进行了高温压缩变形实验, 分析了该合金在变形温度为523-673 K, 应变速率为0.001-1.0 s-1条件下的流变应力变化规律. 结果表明, 变形温度和应变速率对流变应力具有显著影响, 流变应力随变形温度的升高和应变速率的降低而减小; 在较高变形温度和较小变形速率下, 流变应力随真应变的增加至峰值后即呈稳态流变特征. 采用双曲正弦函数拟合曲线, 确定了该合金的变形表观激活能为145.76 kJ/mol; 建立了可用于描述该镁合金的流变应力的单隐层前馈误差反向传播人工神经网络模型. 利用动态材料模型构建了热加工图, 结合组织观察认为, 该合金在648-673 K, 应变速率为0.1-1.0 s-1条件下发生动态再结晶; 而同样应变速率下, 温度低于573 K时材料在变形过程中由于机械孪生导致开裂. 由交滑移所产生的机械回复位错控制着界面的形成, 且动态再结晶模型表明该合金再结晶主要受界面迁移所控制.
关键词 镁合金本构关系流变应力神经网络动态再结晶热加工图    
Abstract:The hot deformation behavior of the T4-treated Mg-6Zn-0.5Zr-0.5Ce alloy was investigated by compressive test using Gleeble 3800 thermal--simulator in the temperature range of 523-673 Kand strain rate range of 0.001-1.0 s-1. The results show that the flow stress is significantly affected by both deformation temperature and strain rate. The flow stress increases with either decreasing deformation temperature or increasing strain rate. The flow stress value tends to be constant after a peak value appearing at high deformation temperature and low strain rate. In the present work, the average activation energy for the hot deformation has been determinded to be 145.76 kJ/mol using the hyperbolic sine constitutive equation. A feed-forward back-propagation artificial neural network (ANN) has been established and used to investigate the flow behaviors of the alloy. The predicted data by the ANN is in good agreement with the experimental ones. Combing microstructure observation, the processing map for this alloy established on the basis of a dynamic material model indicates that the dynamic recrystallization (DRX) would take place in the range of 648-673 K and 0.1-1.0 s-1, while under the same strain rate the flow instability would occur due to mechanical twinning when the temperature below 573 K. The formation of interfaces depends on the process of mechanical recovery caused by cross-slip of screw dislocations. The DRX model indicates that DRX of this alloy is controlled by interface migration.
Key wordsMg-based alloy    constitutive equation    flow stress    artificial neural network    dynamic recrystallization    processing map
收稿日期: 2012-02-28     
ZTFLH: 

TG146.22

 
基金资助:

国家留学基金资助项目2010622106和韩国知识经济部资助项目PMI7300资助

作者简介: 余晖, 男, 1984年生, 博士生
[1] Luo A A, Mishra R K, Sachdev A K. Scr Mater, 2011; 64: 410

[2] Yu K, LiWX, Zhao J,Ma Z Q, Wang R. Scr Mater, 2003; 48: 1319

[3] Qin Y J, Pan Q L, He Y B, LiWB, Liu X Y, Fan X. Acta Metall Sin, 2009; 45: 887

(覃银江, 潘清林, 何运斌, 李文斌, 刘晓艳, 范曦. 金属学报, 2009; 45: 887)

[4] Wang Z X, Liu X F, Xie J X. Acta Metall Sin, 2008; 44: 1378

(王智祥, 刘雪峰, 谢建新. 金属学报, 2008; 44: 1378)

[5] Tang W N, Chen R S, Han E H. Acta Metall Sin, 2006; 42: 1096

(唐伟能, 陈荣石, 韩恩厚. 金属学报, 2006; 42: 1096)

[6] Mishra R K, Gupta A K, Rao P R, Sachdev A K, Kumar A M, Luo A A. Scr Mater, 2008; 59: 562

[7] Chino Y, Kado M, Mabuchi M. Acta Mater, 2008; 56: 387

[8] Zhou H T, Zeng X Q, Liu L F, Zhang Y, Zhu Y P, Ding W J. J Mater Sci, 2004; 39: 7061

[9] Xia C Q, Wang Y N, Wu A R, Gu Y. J Cent South Univ Technol, 2005; 12: 515

[10] Luo Z P, Song D Y, Zhang S Q. J Alloys Compd, 1995; 230: 109

[11] Zhao K Y, Peng X D, Xie W D, Wei Q Y, Yang Y, Wei G B. Trans Nonferrous Met Soc China, 2010; 20(suppl): s324

[12] Ma C, Liu M, Wu G, Ding W, Zhu Y. Mater Sci Eng, 2003; A349: 207

[13] Zhang D F, Qi F G, Lan W, Shi G L, Zhao X B. Trans Nonferrous Met Soc China, 2011; 21: 703

[14] Fan Y, Wu G H, Zhai C Q. Mater Sci Eng, 2006; A433: 208

[15] Qin Y J, Pan Q L, He Y B, Li W B, Liu X Y, Fan X. Mater Manuf Process, 2010; 25: 539

[16] Chun M S, Biglou J, Lenard J G, Kim J G. J Mater Process Technol, 1998; 86: 245

[17] Reddy N S, Lee Y H, Park C H, Lee C S. Mater Sci Eng, 2008; A492: 276

[18] Bariani P F, Bruschi S, Negro T D. J Mater Process Technol, 2004; 152: 395

[19] Bahrami A, Anijdan S H M, Hosseini H R M, Shafyei A, Narimani R. Comput Mater Sci, 2005; 34: 335

[20] Chen Z Y, Li Z Q, Yu C. Mater Sci Eng, 2011; A528: 961

[21] Peng W P, Li P J, Zeng P, Lei L P. Mater Sci Eng, 2008; A494: 173

[22] Poletti C, Dieringa H, Warchomicka F. Mater Sci Eng, 2009; A516: 138

[23] Prasad Y V R K. J Mater Eng Perform, 2003; 12: 638

[24] Slooff F A, Dzwonczyk J S, Zhou J, Duszczyk J, Katgerman L. Mater Sci Eng, 2010; A527: 735

[25] Wang C Y, Wang X J, Chang H, Wu K, ZhengMY. Mater Sci Eng, 2007; A464: 52

[26] Wang Y, Zhang Y, Zeng X, Ding W. J Mater Sci, 2006; 41: 3603

[27] Zhou H T, Li Q B, Zhao Z K, Liu Z C,Wen S F, Wang Q D. Mater Sci Eng, 2010; A527: 2022

[28] Poliak E I, Jonas J J. Acta Mater, 1996; 44: 127

[29] McQueen H J, Ryan N D. Mater Sci Eng, 2002; A322: 43

[30] Deng Y, Yin Z M, Huang J W. Mater Sci Eng, 2011; A528: 1780

[31] Galiyev A, Kaibyshev R, Gottstein G. Acta Mater, 2001; 49: 1199

[32] Ma M L, Zhang K, Li X G, Li Y J, Zhang K. Trans Nonferrous Met Soc, 2008; 18(Suppl): s132

[33] Zhu Y C, Zeng W D, Sun Y, Feng F, Zhou Y G. Comput Mater Sci, 2011; 50: 1785

[34] Ju Q, Li D G, Liu G Q. Acta Metall Sin, 2006; 42: 218

(鞠 \ \ 泉, 李殿国, 刘国权. 金属学报, 2006; 42: 218)

[35] Ravichandran N. J Mater Eng Perform, 2003; 12: 653

[36] Derby B. Scr Metall Mater, 1992; 27: 1581
[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[4] 冀秀梅, 侯美伶, 王龙, 刘玠, 高克伟. 基于机器学习的中厚板变形抗力模型建模与应用[J]. 金属学报, 2023, 59(3): 435-446.
[5] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[6] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[7] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[8] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[9] 彭立明, 邓庆琛, 吴玉娟, 付彭怀, 刘子翼, 武千业, 陈凯, 丁文江. 镁合金选区激光熔化增材制造技术研究现状与展望[J]. 金属学报, 2023, 59(1): 31-54.
[10] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[11] 陈扬, 毛萍莉, 刘正, 王志, 曹耕晟. 高速冲击载荷下预压缩AZ31镁合金的退孪生行为与动态力学性能[J]. 金属学报, 2022, 58(5): 660-672.
[12] 曾小勤, 王杰, 应韬, 丁文江. 镁及其合金导热研究进展[J]. 金属学报, 2022, 58(4): 400-411.
[13] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[14] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[15] 罗旋, 韩芳, 黄天林, 吴桂林, 黄晓旭. 层状异构Mg-3Gd合金的微观组织和力学性能[J]. 金属学报, 2022, 58(11): 1489-1496.