Please wait a minute...
金属学报  2012, Vol. 48 Issue (7): 837-844    DOI: 10.3724/SP.J.1037.2012.00007
  论文 本期目录 | 过刊浏览 |
Ti2448合金高温变形行为及组织演变机制的转变
田宇兴, 李述军, 郝玉琳, 杨锐
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
HIGH TEMPERATURE DEFORMATION BEHAVIOR AND MICROSTRUCTURE EVOLUTION MECHANISM TRANSFORMATION IN Ti2448 ALLOY
TIAN Yuxing, LI Shujun, HAO Yulin, YANG Rui
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

田宇兴 李述军 郝玉琳 杨锐. Ti2448合金高温变形行为及组织演变机制的转变[J]. 金属学报, 2012, 48(7): 837-844.
, , , . HIGH TEMPERATURE DEFORMATION BEHAVIOR AND MICROSTRUCTURE EVOLUTION MECHANISM TRANSFORMATION IN Ti2448 ALLOY[J]. Acta Metall Sin, 2012, 48(7): 837-844.

全文: PDF(4535 KB)  
摘要: 研究了多功能亚稳β型Ti2448(Ti-24Nb-4Zr-8Sn, 质量分数, %)合金在$\beta$单相区的高温变形行为. 结果表明,在低应变速率(<0.1 s-1)和高应变速率(>1 s-1)条件下, 真应力和应变速率的双对数关系可以通过2个线性关系分别表征, 平均应变速率敏感值(mavg)分别为0.265和0.032, 这不同于常规β钛合金随着应变速率的增大而逐渐降低的应变硬化规律, 即Sigmoidal曲线特征. 微观组织演化和动力学分析显示, 这种特殊的双线性关系与高应变速率导致的局域化非均匀塑性变形行为和动态再结晶(DRX) 相关联.尽管动态回复(DRV)是该合金高温塑性变形的主要组织演变机制, 高应变速率使得组织演变从DRV向DRX 转变, 并在交错的变形带内形成小于3 μm的细晶组织. 因此, 高应变速率条件下的DRX是实现Ti2448合金高温变形过程中细化组织的主要机制.
关键词 Ti2448合金动态回复(DRV)动态再结晶(DRX)应变速率组织演变    
Abstract:Ti2448 (Ti-24Nb-4Zr-8Sn, mass fraction, %) is a multifunctional β-type biomedical titanium alloy with low elastic modulus, high strength and good biocompatibility. The alloy exhibits a peculiar plastic deformation behavior at room temperature called highly localized plastic deformation. With aid of such mechanism, the initial microstructure with coarse grains can be easily refined to homogenous equiaxed microstructure with nano-sized grains by the conventional cold processing such as rolling. In the paper, its high temperature plastic deformation behavior and the corresponding microstructure evolution were investigated in the single $\beta$ phase field by varying the strain rates in the ranges of 0.001-70 s-1. The results showed that the true stress and strain rate can be described by a bilinear relation, which is in sharp contrast with the conventional Sigmoidal relation found in other β-type titanium alloys. As the strain rates less than 0.1 s-1, the alloy follows the conventional β-type titanium alloys with a high average value of strain rate sensitivity being 0.265. As the strain rates higher than 1 s-1, the true stress and strain rate can be described by another linear relation with a much small average value of strain rate sensitivity being 0.032. This is different from other alloys exhibiting gradual decrease of strain hardening with the increase of the strain rates. Microstructure observations and kinetic analyses revealed that such bilinear relation would be related to its highly localized plastic deformation behavior and dynamic recrystallization (DRX), which are triggered and enhanced at higher strain rates over 1 s-1. Although dynamic recovery (DRV) is still a key microstructure evolution mechanism of the alloy during plastic deformation in single β phase field, the increase of strain rate induces a transformation from DRV to DRX, resulting in significant grain refinement from the initial coarse grains about 80 μm to refined grains less than 3 μm. Thus, the DRX is a crucial mechanism of the Ti2448 alloy to achieve significant grain refinement during hot processing.
Key wordsTi2448 alloy    dynamic recovery (DRV)    dynamic recrystallization (DRX)    strain rate    microstructure evolution
收稿日期: 2012-01-05     
ZTFLH: 

TG146.2

 
基金资助:

国家重点基础研究发展计划项目2012CB933901和2012CB933902, 国家高技术研究发展计划项目2011AA030106及国家自然科学基金项目51071152和50901080资助

作者简介: 田宇兴, 男, 1984年生, 博士生
[1] Weiss I, Semiatin S L. Mater Sci Eng, 1998; A243: 46

[2] Warchomicka F, Stockinger M, Degischer H P. J Mater Process Technol, 2006; 177: 473

[3] Kent D, Wang G, Yu Z T, Ma X Q, Dargusch M. J Mech Behav Biomed Mater, 2011; 4: 405

[4] Bourell D L, McQueen H J. J Mater Shaping Technol, 1987; 5: 53

[5] Gourdet S, Montheillet F. Mater Sci Eng, 2000; A283: 274

[6] Sakai T. J Mater Process Technol, 1995; 53: 349

[7] Kuhlaann–Wilsdorf D, Hansen N. Scr Metall, 1991; 25: 1557

[8] McQueen H J. Mater Sci Eng, 2004; A387–389: 203

[9] Henshall G A, Kassner M E, McQueen H J. Metall Trans, 1992; 23A: 881

[10] Gryziecki J, Gdula Z. Mater Sci Eng, 1987; A93: 99

[11] Kaibyshev R, Sitdikov O, Goloborodko A, Sakai T. Mater Sci Eng, 2003; A344: 348

[12] Hallberg H, Wallin M, Ristinmaa M. Mater Sci Eng, 2010; A527: 1126

[13] Sitdikov O, Sakai T, Avtokratova E, Kaibyshev R, Tsuzaki K, Watanabe Y. Acta Mater, 2008; 56: 821

[14] Belyakov A, Gao W, Mirura H, Sakai T. Metall Mater Trans, 1998; 29A: 2957

[15] Chen Y J, Li Y J, Walmsley J C, Dumoulin S, Roven H J. Metall Mater Trans, 2010; 41A: 787

[16] Wang G, Xu L, Tian Y X, Zheng Z, Cui Y Y, Yang R. Mater Sci Eng, 2011; A528: 22

[17] Philippart I, Rack H J. Mater Sci Eng, 1998; A254: 253

[18] Balasubrahmanyam V V, Prasad Y V R K. Mater Sci Eng, 2002; A336: 150

[19] Mironov S, Sato Y S, Kokawa H. Mater Sci Eng, 2010; A527: 7498

[20] Hao Y L, Li S J, Sun S Y, Zheng C Y, Yang R. Acta Biomater, 2007; 3: 277

[21] Zhang S Q, Li S J, Jia M T, Hao Y L, Yang R. Scr Mater, 2009; 60: 733

[22] Cui J P, Hao Y L, Li S J, Sui M L, Li D X, Yang R. Phys Rev Lett, 2009; 102: 045503

[23] Hao Y L, Yang R. Acta Metall Sin, 2005; 41: 1183

(郝玉琳, 杨 锐. 金属学报, 2005; 41: 1183)

[24] Vuayshankar M N, Ankem S. Mater Sci Eng, 1990; A129: 229

[25] Lee W S, Lin C F, Chen T H, Hwang H H. J Mech Behav Biomed Mater, 2008; 1: 336

[26] Anken S, Margolin H. Metall Trans, 1986; 17A: 2209

[27] Rao K P, Presad Y V R K. J Mech Work Technol, 1986; 13: 83

[28] McQueen H J, Jin N, Ryan N D. Mater Sci Eng, 1995; A190: 43

[29] Dadras P, Thomas J F. Metall Trans, 1981; 12A: 1867

[30] Li L, Zhou J, Duszczyk J. J Mater Process Technol, 2006; 172: 372

[31] Morgan G C, Hammond C. Mater Sci Eng, 1987; 86: 159

[32] McQueen H J. Microstruct Sci, 1979; 7: 71

[33] Song H W, Zhang S H, Cheng M, Li Z X, Cao C X, Bao C L. Acta Metall Sin, 2011; 47: 462

(宋鸿武, 张士宏, 程明, 李臻熙, 曹春晓, 包春玲. 金属学报, 2011; 47: 462)

[34] Montheillet F, Dajno D, Come N, GauTier E, Simon A, Audrerie P, Chaze A M, Levaillant Ch. In: Froes F H, Caplan I, eds., Titanium 92: Science and Technology, Warrendale: TMS, 1993: 1347

[35] McQueen H J, Bourell D L. In: Sachdev A K, Embury J D, eds., Formability and Metallurgical Structure, Warrendale: TMS, 1987: 344

[36] Warchomicka F, Poletti C, Stockinger M. Mater Sci Eng, 2011; A528: 8277

[37] Sergueeva A V, Stolyarov V V, Valiev R Z, Mukherjee A K. Scr Mater, 2000;43: 819

[38] Li L X, Lou Y, Yang L B, Peng D S, Rao K P. Mater Des, 2002; 23: 451

[39] Kim J H, Semiatin S L, Lee C S. Mater Sci Eng, 2008; A485: 601

[40] Hao Y L, Li S J, Sun S Y, Zheng C Y, Hu Q M, Yang R. Appl Phys Lett, 2005; 87: 091906

[41] Warchomicka F, Stockinger M, Degischer H P. J Mater Process Technol, 2006; 177: 473
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[4] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[5] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[6] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[7] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[8] 李钊, 江河, 王涛, 付书红, 张勇. GH2909低膨胀高温合金热处理中的组织演变行为[J]. 金属学报, 2022, 58(9): 1179-1188.
[9] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[10] 徐静辉, 李龙飞, 刘心刚, 李辉, 冯强. 热力耦合对一种第四代镍基单晶高温合金1100℃蠕变组织演变的影响[J]. 金属学报, 2021, 57(2): 205-214.
[11] 李娟, 赵宏龙, 周念, 张英哲, 秦庆东, 苏向东. CoCrFeNiCu高熵合金与304不锈钢真空扩散焊[J]. 金属学报, 2021, 57(12): 1567-1578.
[12] 刘超, 姚志浩, 郭婧, 彭子超, 江河, 董建新. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律[J]. 金属学报, 2021, 57(12): 1549-1558.
[13] 刘晨曦, 毛春亮, 崔雷, 周晓胜, 余黎明, 刘永长. 低活化铁素体/马氏体钢组织调控及其固相连接研究进展[J]. 金属学报, 2021, 57(11): 1521-1538.
[14] 吴贇, 刘雅辉, 康茂东, 高海燕, 王俊, 孙宝德. K4169合金循环加载过程中的微观组织演变[J]. 金属学报, 2020, 56(9): 1185-1194.
[15] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.