Please wait a minute...
金属学报  2012, Vol. 48 Issue (7): 837-844    DOI: 10.3724/SP.J.1037.2012.00007
  论文 本期目录 | 过刊浏览 |
Ti2448合金高温变形行为及组织演变机制的转变
田宇兴, 李述军, 郝玉琳, 杨锐
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
HIGH TEMPERATURE DEFORMATION BEHAVIOR AND MICROSTRUCTURE EVOLUTION MECHANISM TRANSFORMATION IN Ti2448 ALLOY
TIAN Yuxing, LI Shujun, HAO Yulin, YANG Rui
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(4535 KB)  
摘要: 研究了多功能亚稳β型Ti2448(Ti-24Nb-4Zr-8Sn, 质量分数, %)合金在$\beta$单相区的高温变形行为. 结果表明,在低应变速率(<0.1 s-1)和高应变速率(>1 s-1)条件下, 真应力和应变速率的双对数关系可以通过2个线性关系分别表征, 平均应变速率敏感值(mavg)分别为0.265和0.032, 这不同于常规β钛合金随着应变速率的增大而逐渐降低的应变硬化规律, 即Sigmoidal曲线特征. 微观组织演化和动力学分析显示, 这种特殊的双线性关系与高应变速率导致的局域化非均匀塑性变形行为和动态再结晶(DRX) 相关联.尽管动态回复(DRV)是该合金高温塑性变形的主要组织演变机制, 高应变速率使得组织演变从DRV向DRX 转变, 并在交错的变形带内形成小于3 μm的细晶组织. 因此, 高应变速率条件下的DRX是实现Ti2448合金高温变形过程中细化组织的主要机制.
关键词 Ti2448合金动态回复(DRV)动态再结晶(DRX)应变速率组织演变    
Abstract:Ti2448 (Ti-24Nb-4Zr-8Sn, mass fraction, %) is a multifunctional β-type biomedical titanium alloy with low elastic modulus, high strength and good biocompatibility. The alloy exhibits a peculiar plastic deformation behavior at room temperature called highly localized plastic deformation. With aid of such mechanism, the initial microstructure with coarse grains can be easily refined to homogenous equiaxed microstructure with nano-sized grains by the conventional cold processing such as rolling. In the paper, its high temperature plastic deformation behavior and the corresponding microstructure evolution were investigated in the single $\beta$ phase field by varying the strain rates in the ranges of 0.001-70 s-1. The results showed that the true stress and strain rate can be described by a bilinear relation, which is in sharp contrast with the conventional Sigmoidal relation found in other β-type titanium alloys. As the strain rates less than 0.1 s-1, the alloy follows the conventional β-type titanium alloys with a high average value of strain rate sensitivity being 0.265. As the strain rates higher than 1 s-1, the true stress and strain rate can be described by another linear relation with a much small average value of strain rate sensitivity being 0.032. This is different from other alloys exhibiting gradual decrease of strain hardening with the increase of the strain rates. Microstructure observations and kinetic analyses revealed that such bilinear relation would be related to its highly localized plastic deformation behavior and dynamic recrystallization (DRX), which are triggered and enhanced at higher strain rates over 1 s-1. Although dynamic recovery (DRV) is still a key microstructure evolution mechanism of the alloy during plastic deformation in single β phase field, the increase of strain rate induces a transformation from DRV to DRX, resulting in significant grain refinement from the initial coarse grains about 80 μm to refined grains less than 3 μm. Thus, the DRX is a crucial mechanism of the Ti2448 alloy to achieve significant grain refinement during hot processing.
Key wordsTi2448 alloy    dynamic recovery (DRV)    dynamic recrystallization (DRX)    strain rate    microstructure evolution
收稿日期: 2012-01-05     
ZTFLH: 

TG146.2

 
基金资助:

国家重点基础研究发展计划项目2012CB933901和2012CB933902, 国家高技术研究发展计划项目2011AA030106及国家自然科学基金项目51071152和50901080资助

通讯作者: 郝玉琳     E-mail: ylhao@imr.ac.cn
作者简介: 田宇兴, 男, 1984年生, 博士生

引用本文:

田宇兴 李述军 郝玉琳 杨锐. Ti2448合金高温变形行为及组织演变机制的转变[J]. 金属学报, 2012, 48(7): 837-844.
TIAN Yu-Xin, LI Shu-Jun, HAO Yu-Lin, YANG Rui. HIGH TEMPERATURE DEFORMATION BEHAVIOR AND MICROSTRUCTURE EVOLUTION MECHANISM TRANSFORMATION IN Ti2448 ALLOY. Acta Metall Sin, 2012, 48(7): 837-844.

链接本文:

https://www.ams.org.cn/CN/10.3724/SP.J.1037.2012.00007      或      https://www.ams.org.cn/CN/Y2012/V48/I7/837

[1] Weiss I, Semiatin S L. Mater Sci Eng, 1998; A243: 46

[2] Warchomicka F, Stockinger M, Degischer H P. J Mater Process Technol, 2006; 177: 473

[3] Kent D, Wang G, Yu Z T, Ma X Q, Dargusch M. J Mech Behav Biomed Mater, 2011; 4: 405

[4] Bourell D L, McQueen H J. J Mater Shaping Technol, 1987; 5: 53

[5] Gourdet S, Montheillet F. Mater Sci Eng, 2000; A283: 274

[6] Sakai T. J Mater Process Technol, 1995; 53: 349

[7] Kuhlaann–Wilsdorf D, Hansen N. Scr Metall, 1991; 25: 1557

[8] McQueen H J. Mater Sci Eng, 2004; A387–389: 203

[9] Henshall G A, Kassner M E, McQueen H J. Metall Trans, 1992; 23A: 881

[10] Gryziecki J, Gdula Z. Mater Sci Eng, 1987; A93: 99

[11] Kaibyshev R, Sitdikov O, Goloborodko A, Sakai T. Mater Sci Eng, 2003; A344: 348

[12] Hallberg H, Wallin M, Ristinmaa M. Mater Sci Eng, 2010; A527: 1126

[13] Sitdikov O, Sakai T, Avtokratova E, Kaibyshev R, Tsuzaki K, Watanabe Y. Acta Mater, 2008; 56: 821

[14] Belyakov A, Gao W, Mirura H, Sakai T. Metall Mater Trans, 1998; 29A: 2957

[15] Chen Y J, Li Y J, Walmsley J C, Dumoulin S, Roven H J. Metall Mater Trans, 2010; 41A: 787

[16] Wang G, Xu L, Tian Y X, Zheng Z, Cui Y Y, Yang R. Mater Sci Eng, 2011; A528: 22

[17] Philippart I, Rack H J. Mater Sci Eng, 1998; A254: 253

[18] Balasubrahmanyam V V, Prasad Y V R K. Mater Sci Eng, 2002; A336: 150

[19] Mironov S, Sato Y S, Kokawa H. Mater Sci Eng, 2010; A527: 7498

[20] Hao Y L, Li S J, Sun S Y, Zheng C Y, Yang R. Acta Biomater, 2007; 3: 277

[21] Zhang S Q, Li S J, Jia M T, Hao Y L, Yang R. Scr Mater, 2009; 60: 733

[22] Cui J P, Hao Y L, Li S J, Sui M L, Li D X, Yang R. Phys Rev Lett, 2009; 102: 045503

[23] Hao Y L, Yang R. Acta Metall Sin, 2005; 41: 1183

(郝玉琳, 杨 锐. 金属学报, 2005; 41: 1183)

[24] Vuayshankar M N, Ankem S. Mater Sci Eng, 1990; A129: 229

[25] Lee W S, Lin C F, Chen T H, Hwang H H. J Mech Behav Biomed Mater, 2008; 1: 336

[26] Anken S, Margolin H. Metall Trans, 1986; 17A: 2209

[27] Rao K P, Presad Y V R K. J Mech Work Technol, 1986; 13: 83

[28] McQueen H J, Jin N, Ryan N D. Mater Sci Eng, 1995; A190: 43

[29] Dadras P, Thomas J F. Metall Trans, 1981; 12A: 1867

[30] Li L, Zhou J, Duszczyk J. J Mater Process Technol, 2006; 172: 372

[31] Morgan G C, Hammond C. Mater Sci Eng, 1987; 86: 159

[32] McQueen H J. Microstruct Sci, 1979; 7: 71

[33] Song H W, Zhang S H, Cheng M, Li Z X, Cao C X, Bao C L. Acta Metall Sin, 2011; 47: 462

(宋鸿武, 张士宏, 程明, 李臻熙, 曹春晓, 包春玲. 金属学报, 2011; 47: 462)

[34] Montheillet F, Dajno D, Come N, GauTier E, Simon A, Audrerie P, Chaze A M, Levaillant Ch. In: Froes F H, Caplan I, eds., Titanium 92: Science and Technology, Warrendale: TMS, 1993: 1347

[35] McQueen H J, Bourell D L. In: Sachdev A K, Embury J D, eds., Formability and Metallurgical Structure, Warrendale: TMS, 1987: 344

[36] Warchomicka F, Poletti C, Stockinger M. Mater Sci Eng, 2011; A528: 8277

[37] Sergueeva A V, Stolyarov V V, Valiev R Z, Mukherjee A K. Scr Mater, 2000;43: 819

[38] Li L X, Lou Y, Yang L B, Peng D S, Rao K P. Mater Des, 2002; 23: 451

[39] Kim J H, Semiatin S L, Lee C S. Mater Sci Eng, 2008; A485: 601

[40] Hao Y L, Li S J, Sun S Y, Zheng C Y, Hu Q M, Yang R. Appl Phys Lett, 2005; 87: 091906

[41] Warchomicka F, Stockinger M, Degischer H P. J Mater Process Technol, 2006; 177: 473
[1] 王涛,万志鹏,李钊,李佩桓,李鑫旭,韦康,张勇. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.
[2] 吴静,刘永长,李冲,伍宇婷,夏兴川,李会军. 高Fe、Cr含量多相Ni3Al基高温合金组织与性能研究进展[J]. 金属学报, 2020, 56(1): 21-35.
[3] 江河,董建新,张麦仓,姚志浩,杨静. 服役条件下镍基高温合金应力松弛微观机制[J]. 金属学报, 2019, 55(9): 1211-1220.
[4] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
[5] 张聪惠, 荣花, 宋国栋, 胡坤. 喷丸表面粗糙度对纯Ti焊接接头在HCl溶液中应力腐蚀开裂行为的影响[J]. 金属学报, 2019, 55(10): 1282-1290.
[6] 李旭东, 毛萍莉, 刘晏宇, 刘正, 王志, 王峰. 高应变速率下Mg-3Zn-1Y镁合金的各向异性及变形机制[J]. 金属学报, 2018, 54(4): 557-565.
[7] 毛轶哲, 李建国, 封蕾. 573 K高温时效处理的Al-10Mg合金中粗大β(Al3Mg2)相对热压缩组织演化的影响及机理[J]. 金属学报, 2018, 54(10): 1451-1460.
[8] 王永金, 宋仁伯, 宋仁峰. 9Cr18合金半固态触变压缩变形行为及组织演变[J]. 金属学报, 2018, 54(1): 39-46.
[9] 李细锋, 陈楠楠, 李佼佼, 何雪婷, 刘红兵, 郑兴伟, 陈军. 温度与应变速率对Invar 36合金变形行为的影响[J]. 金属学报, 2017, 53(8): 968-974.
[10] 杨旭, 廖波, 刘坚, 严伟, 单以银, 肖福仁, 杨柯. 中国低活化马氏体钢在液态Pb-Bi中的脆化现象[J]. 金属学报, 2017, 53(5): 513-523.
[11] 蔡贇,孙朝阳,万李,阳代军,周庆军,苏泽兴. AZ80镁合金动态再结晶软化行为研究*[J]. 金属学报, 2016, 52(9): 1123-1132.
[12] 崔君军,陈礼清,李海智,佟伟平. 等温淬火低合金贝氏体球墨铸铁的回火组织与力学性能*[J]. 金属学报, 2016, 52(7): 778-786.
[13] 何岳,向嵩,石维,刘建敏,梁宇,陈朝轶. 冷拔珠光体钢的组织演变对其点蚀行为的影响*[J]. 金属学报, 2016, 52(12): 1536-1544.
[14] 杨亮,高叔博,王艳丽,叶腾,宋霖,林均品. Si对高Nb-TiAl合金组织及室温拉伸性能的影响*[J]. 金属学报, 2015, 51(7): 859-865.
[15] 袁晓云, 陈礼清. 一种高锰奥氏体TWIP钢的高温热变形与再结晶行为*[J]. 金属学报, 2015, 51(6): 651-658.