Please wait a minute...
金属学报  2010, Vol. 46 Issue (8): 930-934    DOI: 10.3724/SP.J.1037.2010.00007
  论文 本期目录 | 过刊浏览 |
马氏体形态的平行多层截面法研究
柳永宁,张贵一,李伟
西安交通大学金属材料强度国家重点实验室, 西安 710049
A STUDY OF MARTENSITIC MORPHOLOGY BY PARALLEL MULTIPLE–LAYERS SECTIONING
LIU Yongning, ZHANG Guiyi, LI Wei
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049
引用本文:

柳永宁 张贵一 李伟. 马氏体形态的平行多层截面法研究[J]. 金属学报, 2010, 46(8): 930-934.
, , . A STUDY OF MARTENSITIC MORPHOLOGY BY PARALLEL MULTIPLE–LAYERS SECTIONING[J]. Acta Metall Sin, 2010, 46(8): 930-934.

全文: PDF(1590 KB)  
摘要: 

设计了一种平行截面原位观察方法, 并研究了一种C含量(质量分数)为1.37%的高碳钢的马氏体形态. 采用激光打孔定位、超细抛光多层减薄方法原位追踪测量了目标马氏体的长度、宽度与减薄厚度的变化. 以厚度累加变化为横坐标, 测量的长度与宽度对称分布为纵坐标, 还原出的马氏体空间形态为扁椭球体, 而不是传统教科书中描述的透镜体, 椭球的几何参数为a/b≈3, a/c≈20.热力学分析表明: 形核能量除了与材料的物理特性有关外, 还与新相的形状有关. 在同等晶粒尺寸条件下, 扁椭球状新相的形核功明显低于透镜状新相的形核功.含C量降低会导致相变驱动力降低, 并使形核功增加, 马氏体新相晶核为板条形态时可弥补因含C量下降导致的形核功增加.

关键词 马氏体相变 高碳马氏体 低碳马氏体 透镜体椭球体    
Abstract

In metallography the shape of high carbon martensite is commonly considered to be ens–like in three dimensions, which is of needle or bamboo leaf on the OM micrographs of section lanes. However, a round martensite on OM micrographs have never been seen so far. This question as not been answered over the years. It has not been theoretically explanined why is martensite ath–like for low carbon steels and lens–like for high carbon steels on OM micrographs. For answering hese questions, the martensitic morphology of a steel with carbon content 1.37% was observed in the ame view by OM using a method of multiple sectioning of one sample. The length, width of the aimed artensite and sectioned thickness of samples were measured before observing. It is found that the artensite is a flat ellipsoid rather than lens–like as described in traditional textbooks. The ratio of a/b is about 3 and a/c is abot 20 for the martensite ellisoid. The thermal dynamic analyss ndicates hat the nucleation energy for a martenste s closely related to its shape. Ithe austenite with the ame grain size, the nucleation energy (ΔG) of martensite will be lower with ellipsoid shape than with lens shape. The drvng force for martensitic transformation will reduce with the decrease of carbon ontent, resulting n the formation of lath–like martensite in steels with low carbon content.

Key wordsmartensitic transformation    high carbon martensie    low carbon martensite    lens    llipsoid
收稿日期: 2010-01-05     
基金资助:

国家自然科学基金资助项目50871082

作者简介: 柳永宁, 男, 1956年生, 教授
[1] Shi D K. the Foundamental of Materials Science, Mechanical Press of China, 1999: 336 (石徳珂, 材料科学基础, 机械工业出版社, 1999: 336) [2] G.B.Olson and U.S.Owen, Martensite, ASM International, The materials Information Society, 1992: 81 [3] Anil Kumar Sinha, Physical Metallurgy Handbook, McGraw-Hill, (2003), 8: 37 [4] Maki T, Mater. Sci. Forum 56-58 (1990): 157-168 [5] Maki T, Shimooka S, Arimoto T, Tamura I. Trans. JIM, 14(1973): 62-67 [6] Shibata, H.Yonezawa, K.Yabuuchi, S.Morito, T.Furuhara, T.Maki. Materials Science and Engineering A 438-440 (2006): 241-245 [7] Davies R G, Magee C L. Mat Trans. 1(1970): 2927-2931 [8] Krauss G, Marder A R. Met.Trans, 2(1972): 2343-2357 [9] Xu Z Y. martensitic transformation and martensite, China Science Press, 1999 (徐祖耀, 马氏体相变与马氏体, 科学出版社, 第二版, (1999)) [10] Verhoeven J D. Fundamentals of Physical Metallurgy. John Wiley &Sons. Inc. (1975): 48 [11] Proter D A and Easterling K E. Phase Transformations in Metal and Alloys. Second Edition, Chapman &Hall, (1992): 382 [12] Morito S, Huang X, Furuhara T, Maki T, Hansen N. Acta Materialia 54(2006): 5323-5331 [13] Liu YJ, Huang BY, Tan YH, Fan SH. J. Iron &Steel Res, Int, 3 (2005): 46-50 [14] Morito S, Nishikawa J, T Maki, ISIJ Int. 43 (2003): 1475-1477 [15] Zhang Z L, Liu Y N, Yu Guang, Zhu J W, He T. Acta Metall Sin, 2009; 3: 280 (张占领, 柳永宁, 于光, 朱杰武, 何涛.金属学报,2009; 3: 280)
[1] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[2] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[3] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[4] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[5] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[6] 肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状[J]. 金属学报, 2021, 57(1): 29-41.
[7] 王世宏,李健,葛昕,柴锋,罗小兵,杨才福,苏航. γ/ε双相Fe-19Mn合金在拉伸变形过程中的组织演变和加工硬化行为[J]. 金属学报, 2020, 56(3): 311-320.
[8] 郑晓航, 宁睿, 段佳彤, 蔡伟. Ti70-xTa15Zr15Fex (x=0.3、0.6、1.0)形状记忆合金薄膜的马氏体相变与阻尼行为[J]. 金属学报, 2020, 56(12): 1690-1696.
[9] 陈雷, 郝硕, 梅瑞雪, 贾伟, 李文权, 郭宝峰. 节约型双相不锈钢TRIP效应致塑性增量及其固溶温度依赖性[J]. 金属学报, 2019, 55(11): 1359-1366.
[10] 崔立山, 姜大强. 基于应变匹配的高性能金属纳米复合材料研究进展[J]. 金属学报, 2019, 55(1): 45-58.
[11] 魏铖, 柯常波, 马海涛, 张新平. 基于序参量梯度的改进相场模型及对大尺度体系马氏体相变的模拟研究[J]. 金属学报, 2018, 54(8): 1204-1214.
[12] 韦昭召, 马骁, 张新平. NiTi合金B2-B19′马氏体相变晶体学的拓扑模拟研究[J]. 金属学报, 2018, 54(10): 1461-1470.
[13] 杨继兰, 蒋元凯, 顾剑锋, 郭正洪, 陈海龑. 奥氏体化温度对中碳淬火-配分钢干滑动摩擦磨损性能的影响[J]. 金属学报, 2018, 54(1): 21-30.
[14] 王学,胡磊,陈东旭,孙松涛,李立全. 马氏体相变对9%Cr热强钢管道多道焊接头残余应力演化的影响[J]. 金属学报, 2017, 53(7): 888-896.
[15] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.