Please wait a minute...
金属学报  2010, Vol. 46 Issue (8): 921-929    DOI: 10.3724/SP.J.1037.2010.00027
  论文 本期目录 | 过刊浏览 |
外应力对NiTi合金中共格Ni4Ti3沉淀相长大行为影响的相场法模拟
柯常波,马骁, 张新平
华南理工大学材料科学与工程学院, 广州 510640
PHASE FIELD SIMULATION OF THE EFFECT OF APPLIED EXTERNAL STRESS ON GROWTH KINETICS OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi ALLOY
KE Changbo, MA Xiao, ZHANG Xinping
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640
引用本文:

柯常波 马骁 张新平. 外应力对NiTi合金中共格Ni4Ti3沉淀相长大行为影响的相场法模拟[J]. 金属学报, 2010, 46(8): 921-929.
, , . PHASE FIELD SIMULATION OF THE EFFECT OF APPLIED EXTERNAL STRESS ON GROWTH KINETICS OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi ALLOY[J]. Acta Metall Sin, 2010, 46(8): 921-929.

全文: PDF(2412 KB)  
摘要: 

运用相场模型模拟了外加应力对NiTi形状记忆合金中Ni4Ti3沉淀相组织形貌及长大行为的影响。无外加应力作用的时效过程中,4组Ni4Ti3变体均沿着各自对应的(111)B2惯习面从NiTi基体相中析出;而在<111>B2方向施加压应力时,则只有一组Ni4Ti3变体从NiTi基体相中析出,其惯习面法线方向平行于外加应力方向;单轴压应力作用下时效时, Ni4Ti3形核数量明显增加。外加单轴压应力可促进Ni4Ti3变体的形核和长大,但并不改变变体的面积分数、长度、宽度以及长度-宽度比等参数随时效时间变化的趋势;相同时刻,压应力增大使变体长度及宽度均略微增加,但均小于无应力作用下的情形;而相同时刻,变体的面积分数随外加应力的增大而增加。相场模拟结果与实验观察能较好地吻合。

关键词 NiTi形状记忆合金 Ni4Ti3沉淀相 动力学 相场法 外加应力场    
Abstract

The presence and distribution of Ni4Ti3 particles in NiTi alloys have a significant influence on martensitic phase transformation path by favoring the formation of R–phase rather than B19’ phase since the latter produces larger lattice deformation. To deeply understand the above, some experimental studies have been done by using differential scanning calorimetry (DSC) and in situ transmission electron microscopy (TEM). Meanwhile, some preliminary simulations have also been performed focusing on the morphology evolution of single and multiple Ni4Ti3 variants in single NiTi alloy system as well as considering the effect of external loads on selective precipitate growth. Whereas, in engineering application, the NiTi alloys often undergo the external load which may affect the growth kinetics of Ni4Ti3 precipitates. Therefore, it is necessary to investigate the effect of applied load on growth kinetics of Ni4Ti3 precipitates. In this paper, the phase field method has been extended to study the microstructure evolution and growth kinetics of Ni4Ti3 precipitates in NiTi alloys during zero–stress and stress–assisted aging. The simulation results show that during stress–free aging, four groups of the variants precipitate along the corresponding (111)B2 habit plane; when the NiTi matrix is under <111>B2 comprssive stress–assisted aging, there is only one group of the variants with the normal lines parallel to <111>B2 to be precipitated. Although the uniaxial compressive stress apparently promotes the nucleation and slightly accelerates the growth of Ni4Ti3 variants in each group, the trends of aging time dependences of the area fraction, variant length, variant width and length–width ratio seem unchanged. The larger stresses can cause length and width of the variant slightly larger, but the area fraction of the Ni4Ti3 particles increases with increasing stress level. The simulation results are in good coincidence with the experimental results available.

Key wordsNiTi shape memory alloy    Ni4Ti3 precipitate    kinetics    phase field approach    applied external stress
收稿日期: 2010-01-14     
基金资助:

国家自然科学基金项目50871039和50801029以及国家建设高水平大学公派研究生项目2008615024资助

作者简介: 柯常波, 男, 1981年生, 博士生
[1] Allafi J K, Dlouhy A, Eggeler G. Acta Mater, 2002; 50: 4255 [2] Michutta J, Somsen C, Yawny A, Dlouhy A, Eggeler G. Acta Mater, 2006; 54: 3525 [3] Moore K T, Howe J M. Acta Mater, 2000; 48: 4083 [4] Bosze W P, Trivedi R. Metall Trans, 1974; 5: 511 [5] Enomoto M, Aaronson H I. Scr Metall, 1989; 23: 55 [6] Enomoto M, Hirth J P. Metall Mater Trans, 1996; 27A: 1491 [7] Ke C B, Ma X, Zhang X P. Acta Metall Sin, 2010; 46:84 (柯常波, 马骁, 张新平. 金属学报. 2010; 46:84) [8] Dlouhy A, Allafi J K, Eggeler G. Philos Mag, 2003; 83: 339 [9] Michutta J, Carrol M C, Yawny A, Somsen C, Neuking K, Eggeler G. Mater Sci Eng, 2004; A378: 152 [10] Li D Y, Chen L Q. Acta Mater, 1996; 45: 2435 [11] Li D Y, Chen L Q. Acta Mater, 1996; 45: 471 [12] Li D Y, Chen L Q. Acta Mater. 1997; 46: 639 [13] Khachaturyan A G. Theory of structural transformation in solid. New York: Wiley-Interscience, 1983: 213 [14] Wagner M F, Windl W. Acta Mater, 2008; 56: 6232 [15] Wagner M F, Windl W. Acta Mater, 2009; 60: 207 [16] Sharma S K, Macht M P, Naundorf V. Phys Rev, 1994; 49B: 6655 [17] Wang G, Xu D S, Ma N, Zhou N, Payton E J, Yang R, Mills M J, Wang Y. Acta Mater, 2009;57: 316 [18] Shen C, Chen Q, Wen Y H, Simmons J P, Wang Y. Scr Mater, 2004; 50: 1023 [19] Shen C, Chen Q, Wen Y H, Simmons J P, Wang Y. Scr Mater, 2004; 50: 1029 [20] Wang Y, Banerjee D, Su C C, Khachaturyan A G.. Acta Mater, 1998; 46: 2983 [21] Zhou N. PhD Thesis, The Ohio State University, 2008
[1] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[2] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.
[3] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[5] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[6] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[7] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[8] 夏大海, 邓成满, 陈子光, 李天书, 胡文彬. 金属材料局部腐蚀损伤过程的近场动力学模拟:进展与挑战[J]. 金属学报, 2022, 58(9): 1093-1107.
[9] 王江伟, 陈映彬, 祝祺, 洪哲, 张泽. 金属材料的晶界塑性变形机制[J]. 金属学报, 2022, 58(6): 726-745.
[10] 郭璐, 朱乾科, 陈哲, 张克维, 姜勇. Fe76Ga5Ge5B6P7Cu1 合金的非等温晶化动力学[J]. 金属学报, 2022, 58(6): 799-806.
[11] 唐帅, 蓝慧芳, 段磊, 金剑锋, 李建平, 刘振宇, 王国栋. 铁素体区等温过程中Ti-Mo-Cu微合金钢中的共析出行为[J]. 金属学报, 2022, 58(3): 355-364.
[12] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[13] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[14] 许坤, 王海川, 孔辉, 吴朝阳, 张战. 一种新分组团簇动力学模型模拟铝合金中的Al3Sc析出[J]. 金属学报, 2021, 57(6): 822-830.
[15] 侯玉柏, 于月光, 郭志猛. W-Ni-Fe三元合金等离子球化过程的SPH仿真研究[J]. 金属学报, 2021, 57(2): 247-256.