Please wait a minute...
金属学报  2010, Vol. 46 Issue (8): 935-940    DOI: 10.3724/SP.J.1037.2010.00144
  论文 本期目录 | 过刊浏览 |
原位TiC颗粒弥散强化304不锈钢的制备及组织性能研究
倪自飞1,,孙扬善1,2,薛烽1,2,白晶1,2
1. 东南大学材料科学与工程学院, 南京 211189
2. 江苏省先进金属材料高技术研究重点实验室, 南京 211189
STUDY ON FABRICATION, MICROSTRUCTURE AND PROPERTIES OF IN SITU TiC PARTICLE ON DISPERSION–STRENGTHENED 304 STAINLESS STEEL
NI Zifei 1, SUN Yangshan 1,2, XUE Feng 1,2, BAI Jing 1,2
1. School of Materials Science and Engineering, Southeast University, Nanjing 211189
2. Jiangsu Key Laboratory for Advanced Metallic Materials, Nanjing 211189
引用本文:

倪自飞 孙扬善 薛烽 白晶. 原位TiC颗粒弥散强化304不锈钢的制备及组织性能研究[J]. 金属学报, 2010, 46(8): 935-940.
, , , . STUDY ON FABRICATION, MICROSTRUCTURE AND PROPERTIES OF IN SITU TiC PARTICLE ON DISPERSION–STRENGTHENED 304 STAINLESS STEEL[J]. Acta Metall Sin, 2010, 46(8): 935-940.

全文: PDF(1877 KB)  
摘要: 

用原位熔铸法制备了TiC颗粒弥散强化304不锈钢. 显微组织观察表明,原位合成的TiC颗粒尺寸在3-10 μm之间, 局部有轻微团聚现象. TiC颗粒的加入, 使304不锈钢的强度明显提高, 但塑性有所下降; TiC弥散强化304不锈钢铸锭经电渣重熔后, TiC颗粒细化, 分布更均匀, 且在显微组织中可观察到纳米尺度的TiC颗粒. 电渣重熔后强化钢的强度进一步提高, 塑性也有所改善. 在650℃/150 MPa的条件下, 引入TiC颗粒的强化钢抗蠕变性能远高于304母合金, 而电渣重熔后, 由于TiC颗粒的细化, 钢的抗蠕变性能进一步改善.

关键词 TiC 弥散强化 电渣重熔 力学性能    
Abstract

TiC dispersion–strengthened 304 stainless steel was fabricated using the technique of in situ reaction during melting of the steel. Microstructure observation reveals that the distribution of the added TiC particles with the size of 3—10 μm is basically uniform in the matrix grains, but slight aggregation of particles is observed in a few areas in the microstructure. The addition of TiC particles into 304 stainless steel results in the increase of ultimate strength, but the decrease of ductility. When the ingot of the TiC dispersion strengthened 304 stainless steel prepared is remelted by the technique of electroslag remelting, TiC particles in the steel are significantly refined and the distribution of them becomes more homogeneous, therefore the tensile properties of the steel are further improvd in comparison with that before electroslag remelting. Some tiny TiC particles with nano–scale were observed in the microstructure of the steel after electroslag remelting. Introduction of TiC particles to 304 stainless steel also causes a notable increase in creep resistance at thtemperature of 650 ℃ and applied stress of 150 MPa and the further improvement on creep properties of the steel is obtined after electroslag remelting.

Key wordsTiC    dispersion–strengthened    electroslag remelting    mechanical property
收稿日期: 2010-03-26     
基金资助:

国家高技术研究发展计划资助项目2007AA03Z508

作者简介: 倪自飞, 男, 1980年生, 博士生
[1] Ibrahim I A, Mohamed F A, Lavernia E J. J Mater Sci, 1991; 26(12): 1137 [2]Terry B S, Chinyamakobvu O S. Mater Sci Lett, 1991; 10: 628 [3] Kattamis T Z, Suganuma T. Mater Sci Eng, 1990; A128: 241 [4] Raghunath C, Bhat M S, Rohatgi P K. Scripta Metall Mater, 1995; 32: 577 [5]Sun Y S, Huang H B, He H Y, Cai L, Xue F, Mei J P, Wang S Q. China Pat ZL99114272.1, 2002 (孙扬善,黄海波,何华英,蔡磊,薛烽,梅建平,王仕勤.中国专利, ZL99114272.1, 2002) [6] Wu Q L, Sun Y S, Xue F, Zhou J.Acta Metall Sin, 2008; 44: 745 (吴钱林,孙扬善,薛烽,周健. 金属学报, 2008; 44: 745) [7] Manoharan M, Gupta M, Composites Part B, 1999; 30: 107 [8] Dumitrescu LFS, Hillert M. ISIJ Int, 1998; 39: 84 [9] Hernandez-Morales B, Mitchell A. Ironmak Steelmak, 1999; 26: 423 [10] McCartney D G. Int Mat Rev, 1989; 34: 247 [11] Wilshire B, Palmer C J. Scripta Materialia, 2002; 46: 483 [12] Takahashi Y, Yamane T. J Mater Sci, 1979; 14: 2818
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.