Please wait a minute...
金属学报  2010, Vol. 46 Issue (6): 715-722    DOI: 10.3724/SP.J.1037.2009.00582
  论文 本期目录 | 过刊浏览 |
超轻α固溶体基Mg-6Li-3Zn合金的位错蠕变
曹富荣1; 管仁国1; 丁桦1; 李英龙1; 周舸1; 崔建忠2
1.东北大学材料与冶金学院; 沈阳 110819
2.东北大学材料电磁过程教育部重点实验室; 沈阳 110819
DISLOCATION CREEP IN SUPER–LIGHT α SOLID SOLUTION BASE Mg–6Li–3Zn ALLOY
CAO Furong1; GUAN Renguo1; DING Hua1; LI Yinglong1; ZHOU Ge1;CUI Jianzhong2
1.College of Materials and Metallurgy; Northeastern University; Shenyang 110819
2.Key Lab of Materials Electromagnetic Process; Ministry of Education; Northeastern University; Shenyang 110819
引用本文:

曹富荣 管仁国 丁桦 李英龙 周舸 崔建忠. 超轻α固溶体基Mg-6Li-3Zn合金的位错蠕变[J]. 金属学报, 2010, 46(6): 715-722.
, , , , . DISLOCATION CREEP IN SUPER–LIGHT α SOLID SOLUTION BASE Mg–6Li–3Zn ALLOY[J]. Acta Metall Sin, 2010, 46(6): 715-722.

全文: PDF(1198 KB)  
摘要: 

采用熔铸和大变形轧制制备了Mg-6Li-3Zn合金板材, 研究了合金的高温变形行为、显微组织、空洞与位错蠕变机制. 在623 K和1.67×10-3 s-1条件下获得了300%的最大延伸率. OM, TEM和SEM观察显示, 合金带状晶粒组织在573 K和1.67×10-3 s-1条件下发生显著的动态再结晶, 亚晶轮廓不清晰,位错分布比较均匀. 合金在573-623 K和1.67×10-3 s-1条件下断裂形式为韧性断裂. 获得了新型的位错黏性滑移与位错攀移转变蠕变机制图,表明Mg-6Li-3Zn合金带状晶粒组织在573 K和1.67×10-3 s-1条件下高温变形机制为晶格扩散控制的位错黏性滑移, 其应力指数为3(应变速率敏感性指数0.33), 变形激活能为134.8 kJ/mol, 与Mg的晶格扩散激活能相同.获得了新型的考虑聚合的空洞长大图, 合金在573 K和1.67×10-3 s-1条件下的空洞长大机制为塑性控制的空洞长大.

关键词 Mg-Li-Zn合金 位错蠕变 准超塑性 力学性能 空洞    
Abstract

Mg–6Li–3Zn alloy was prepared by Jackson’s melting and casting method and the sheets of 1.2 mm in thickness processed by hot rolling at 573 K and cold rolling with a total reduction of more than 92% were obtained. The high–temperature mechanical behavior at temperatures ranging
from 423 to 673 K and initial strain rates ranging from 1.67×10−3 to 5×10−2 s−1 were investigated. The microstructure evolution, such as grains, subgrains, dislocations, cavities and fracture morphology, were investigated by OM, TEM and SEM. Yavari–Langdon model describing the transition between dislocatoviscous glide and dislocation climb was used to construct a new dislocatiocreep mechanism map which consists of Cottrell’s solute atmosphere breakaway dislocation climb regime, dislocation viscous glide regime and Cottrell’s solute atmosphere incorporated dislocation climb regime. A new cavity growth map considering cavity coalescence was obtained according to the cavity growth models. The maximum elongation to failure of 300% was demonstrated at 623 K and an initial strain rate of 1.67×10−3 s−1. Significant dynamic recrystallization occurred in band–like structure at 573 K and an initial strain rate of 1.67×10−3 s−1, the subgrain contour was ambiguous and dislocation distribution was relatively uniform. Fracture mode of the alloy at 573—623 K and an initial strain rate of 1.67×10−3 s−1 is ductile fracture. It is shown by the dislocation creep mechanism map that the high–temperature deformation mechaism in Mg–6Li–3Zn alloy sheet with bad–like structure at 573 K and an initial strain rate of .67×10−3 s−1 is dislocation viscous glide cotrolled by lattice diffusion, the stress exponent is 3 (strain rate sesitivity exponent 0.33) and deformation activation energy is 134.8 kJ/mol, which is the samas the lattice diffusion activation energy of Mg. The cavity growth mechanism of the alloy at 573 K and iitial strain rate of 1.67×10−3 s−1 is plasticity controlled cavity growth.

Key wordsMg-Li-Zn alloy    dislocation creep    quasi-superplasticity    mechanical property    cavity
收稿日期: 2009-09-07     
基金资助:

国家自然科学基金项目50774023和50974038, 国家高技术研究发展计划项目2007AA03Z111及中央高校基本科研业务费090502003资助

作者简介: 曹富荣, 男, 1964年生, 副教授, 博士

[1] Counts W A, Friak M, Raabe D, Neugebauer J. Acta Mater, 2009; 57: 69
[2] Kim W J, Kim M J, Wang J Y. Mater Sci Eng, 2009; A516: 17
[3] Cao F R, Lei F, Cui J Z, Wen J L. Acta Metall Sin, 1999; 35: 770
(曹富荣, 雷方, 崔建忠, 温景林. 金属学报, 1999; 35: 770)
[4] Nayeb–Hashemi A A, Clark J B, Pelton A D. Bull Alloy Phase Diagram, 1984; 5: 365
[5] Raynor G V. The Physical Metallurgy of Magnesium and Its Alloys. London: Pergamon Press, 1959: 25
[6] Kassner M E, Perez–Prado M T. Prog Mater Sci, 2000; 45: 1
[7] Yavari P, Langdon T G. Acta Metall, 1982; 30: 2181
[8] Somekawa H, Hirai K, Watanabe H, Takigawa Y, Higashi K. Mater Sci Eng, 2005; A407: 53
[9] Li Y, Langdon T G. Acta Mater, 1998; 46: 1143
[10] Weinberg A F, Levinson D W, Rostoker W. Trans ASM, 1956; 48: 855
[11] Cao F R, Ding H, Li Y L, Zhou G, Cui J Z. Mater Sci Eng, 2010, A527: 2335
[12] Sherby O D, Wadsworth J. In: Krauss G ed., Deformation, Processing and Structure. Metals Park, Ohio: ASM, 1982: 355
[13] Hirai K, Somekawa H, Takigawa Y, Higashi K. Scr Mater, 2007; 56: 237
[14] King H W. J Mater Sci, 1966; 1: 79
[15] Murr L E. Interfacial Phenomena in Metals and Alloys. Mass: Addison Wesley, 1975: 55
[16] Koster W. Z Metallk, 1948; 39: 1
[17] Friedel J. Dislocations. Oxford: Pergamon Press, 1964: 202
[18] Wang J S, Nix W D. Acta Metall, 1986; 34: 545
[19] Fuentes–Samaniego R, Nix W D. Scr Metall, 1981; 15: 15
[20] Brown A W, Ashby M F. Acta Metall, 1980; 28: 1085
[21] Wolfenstine J, Gonzalez–Docel G, Sherby O D. J Mater Res, 1990; 5: 1359
[22] Ruano O A, Wadsworth J, Sherby O D. J Mater Sci, 1985; 20: 3735
[23] Pilling J, Ridley N. Superplasticity in Crystalline Solids. London: The Institute of Metals, 1989: 118
[24] Cao F R. PhD Thesis, Northeastern University, Shenyang, 1999
(曹富荣. 东北大学博士学位论文, 沈阳, 1999)
[25] Stowell M J, Livesey D W, Ridley N. Acta Metall, 1984; 32: 35
[26] Mukherjee A K. Mater Sci Eng, 1971; 8: 83
[27] Taleff E M, Ruano O A, Wolfenstine J, Sherby O D. J Mater Res, 1992; 7: 2131

[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[11] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[12] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.