Processing math: 100%
Please wait a minute...
金属学报  2010, Vol. 46 Issue (1): 57-61    
  论文 本期目录 | 过刊浏览 |
316L不锈钢热加工硬化行为及机制
宋仁伯1);项建英1);侯东坡1);任培东2)
1. 北京科技大学材料科学与工程学院; 北京 100083 2. 酒泉钢铁股份有限公司技术中心; 嘉峪关 735100
BEHAVIOR AND MECHANISM OF HOT WORK-HARDENING FOR 316L STAINLESS STEEL
SONG Renbo1); XIANG Jianying1); HOU Dongpo1); REN Peidong2)
1 School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 2 Technological Center of Jiuquan Iron & Steel Co. Ltd.; Jiayuguan 735100
引用本文:

宋仁伯 项建英 侯东坡 任培东. 316L不锈钢热加工硬化行为及机制[J]. 金属学报, 2010, 46(1): 57-61.
, , , . BEHAVIOR AND MECHANISM OF HOT WORK-HARDENING FOR 316L STAINLESS STEEL[J]. Acta Metall Sin, 2010, 46(1): 57-61.

全文: PDF(1005 KB)  
摘要: 

在Gleeble-1500热模拟试验机上, 通过高温压缩实验对316L不锈钢的热加工硬化特点和机制进行了研究. 根据Ludwik幂函数模型对实验数据进行了非线性拟合, 并用 Crussard-Jaoul分析法计算了Ludwik幂函数模型的n值. 实验结果表明: 316L不锈钢在热变形过程中易发生加工硬化, 真应力-应变曲线上未出现应力峰值; 热变形过程中发生了部分动态再结晶, 这一不完全的软化机制无法抵消热加工硬化的作用, 另外在热变形过程中发生了孪生行为, 这是热加工硬化的主要机制之一.

关键词 316L不锈钢热加工硬化Crussard-Jaoul分析法动态再结晶孪晶    
Abstract

The characteristics of hot work-hardening for 316L stainless steel have been systematically studied through high temperature compression tests on the Gleeble-1500 thermal simulation testing machine. According to Ludwik true stress-strain model, the experimental data has been regressed by using nonlinear fitting method, and the n value in Ludwik model, a comprehensive index which reflects the competitive result between work-hardening and softening, has been calculated with Crussard-Jaoul method. The dynamic recrystallization and twinning were observed by OM and TEM. The experiments reveal that 316L stainless steel is easy to work-hardening during hot deformation, and deformation rate can effect nC-J-ε curves and variation law; There is no peak stress on its true stress-strain curves, but partial dynamic recrystallization has occurred during hot working process. This incomplete softening mechanism can't counteract the effect of hot work-hardening, so the true stress-strain curves still rise with deformation increasing; In addition, twinning occurred during hot working is one of the major mechanisms of hot work-hardening.

Key words316L stainless steel    hot work-hardening    Crussard-Jaoul analysis    dynamic recrystallization    twin
收稿日期: 2009-07-10     
ZTFLH: 

TG142.7

 
作者简介: 宋仁伯, 男, 1970年生, 副教授, 博士

[1] ASM, translated by Ma J R, Chen L M. Metals Handbook. Beijing: Machinery Industry Press, 1994: 7
(ASM, 马九荣, 陈立敏译. 金属手册. 北京: 机械工业出版社, 1994: 7)

[2] Wang S T, Yang K, Shan Y Y, Li L F. Acta Metall Sin, 2007; 43: 171
(王松涛, 杨柯, 单以银, 李来风. 金属学报, 2007; 43: 171)
[3] Soussan A, Degallaix S. Mater Sci Eng, 1991; A142: 169
[4] Ludwigson D C, Berger J A. JISI, 1969; 207: 63
[5] Simmons J W. Acta Mater, 1997; 45: 2467
[6] Lan S H, Lee H J, Lee S H. Mater Des, 2009; 30: 3881
[7] Jha B K, Ram A, Sagar D V. J Mater Sci Lett, 1987; 6: 891
[8] Mejia I, Maldonado C, Benito J A. Mater Sci Forum, 2006; 509: 37
[9] Remy L. Metall Trans, 1981; 12A: 387
[10] Karaman I, Sehitoglu H, Maier H J. Acta Mater, 2001; 49: 3919
[11] Poliak E I, Jonas J J. ISIJ Int, 2003; 43: 684
[12] McQueen H J, Yue S, Ryan N D, Fry E. J Mater Process Technol, 1995; 53: 293
[13] Adler P H, Olson G B, Owen W S. Metall Trans, 1985; 17A: 1725

[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[5] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{10ˉ12}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[6] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[7] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[8] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[9] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[10] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[11] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[12] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.
[13] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[14] 戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
[15] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.