Please wait a minute...
金属学报  2010, Vol. 46 Issue (1): 52-56    
  论文 本期目录 | 过刊浏览 |
2205双相不锈钢的高温变形行为
陈雷; 王龙妹; 杜晓建; 刘晓
钢铁研究总院冶金工艺研究所; 北京 100081
HOT DEFORMATION BEHAVIOR OF 2205 DUPLEX STAINLESS STEEL
CHEN Lei; WANG Longmei; DU Xiaojian; LIU Xiao
Department of Metallurgical Technology; Central Iron and Steel Research Institute; Beijing 100081
引用本文:

陈雷 王龙妹 杜晓建 刘晓. 2205双相不锈钢的高温变形行为[J]. 金属学报, 2010, 46(1): 52-56.
, , , . HOT DEFORMATION BEHAVIOR OF 2205 DUPLEX STAINLESS STEEL[J]. Acta Metall Sin, 2010, 46(1): 52-56.

全文: PDF(941 KB)  
摘要: 

利用Gleeble-3800热力模拟试验机在温度为1223-1523 K, 应变速率为0.01-10 s-1的条件下进行了2205双相不锈钢热压缩变形实验, 测定了真应力-真应变曲线, 分析了变形组织. 结果表明: 奥氏体分布在随温度升高而含量增加的铁素体基体上, 升高温度和降低应变速率可促进奥氏体发生动态再结晶. 基于热变形方程计算得到了热变形激活能Q=451 kJ/mol, 表观应力指数n=4.026. 真应力-真应变曲线存在的“类屈服平台”效应与Z参数有关, 随着Z参数的减小而逐渐增强. 基于简化应力函数的ln Zσp之间的线性关系在临界点(ln Zc=38.18)发生偏移;峰值应力与温度及应变速率的关系可表示为: σp=20.6lnε+1118002/T-266.8(ln Z>38.18); σp=9.1lnε+493874/T-701.9(ln Z≦38.18)

关键词 双相不锈钢热变形动态再结晶Z参数峰值应力    
Abstract

During hot deformation of the duplex stainless steels consisting of $\delta$--ferrite and $\gamma$--austenite, their microstructure evolution and mechanical response are more complicated as compared with those of single--phase ferritic or austenitic stainless steels, especially for study of the mechanical behavior. In the present research, the hot deformation behavior of a 2205 duplex stainless steel has been investigated through uniaxial compression test using Gleeble--3800 thermal--mechanical simulator within the temperature range of 1223---1523 K and the strain rate range of 0.01---10 s$^{-1}$, the corresponding flow curves and their characters and microstructures have been determined and analyzed. Elongated austenite distributes in ferrite matrix, and the volume fraction of ferrite increases with rising temperature. Dynamic recrystallization of austenite is enhanced by increasing temperature and decreasing strain rate. Based on the constitutive equation for hot deformation, the apparent activation energy (Q) and the apparent stress exponent (n) of the steel are obtained to be about 451 kJ/mol and 4.026, respectively. There is a particular shape of flow curves, i.e. a yield point elongation-like effect, which is characterized by a non-strengthening plateau during the initial stages of plastic deformation. This yield point elongation-like effect increases with decreasing Zener-Hollomon parameter, Z. When used a simplified stress function, a deviation of linear relationship between ln Z and peak stress (σp) occurred at the critical value (ln Zc=38.18). Relationships between peak stress and temperature and strain rate can be more simply described as σp=20.6ln ε+1118002/T-266.8(ln Z>38.18), and σp=9.1ln ε+493874/T-701.9(ln Z≦38.18).

Key wordsduplex stainless steel    hot deformation    dynamic recrystallization    Z parameter    peak stress
收稿日期: 2009-05-14     
ZTFLH: 

TG133

 
作者简介: 陈雷, 男, 1982年生, 博士生

[1] Nilsson J O. Mater Sci Technol, 1992; 8: 685
[2] Chen T H, Weng K L, Yang J R. Mater Sci Eng, 2002; A338: 259
[3] Tseng C M, Liou H Y, Tsai W T. Mater Sci Eng, 2003; A344: 190
[4] Yu Z C, Cheng S M, Ding D H. Spec Steel Technol, 2005; (4): 42
(余志川, 程士明, 丁大虎. 特钢技术, 2005; (4): 42)

[5] Shu X J, Zhang S Q, Song Z G. Steel Pipe, 2004; 33(6): 15
(舒先进, 张淑琴, 宋志刚. 钢管, 2004; 33(6): 15)

[6] Iza–Mendia A, Pi˜nol–Juez A, Urcola J J, Guti´errez I. Metall Mater Trans, 1998; 29A: 2975
[7] Pi˜nol–Juez A, Iza–Mendia A, Guti´errez I. Metall Mater Trans, 2000; 31A: 1671
[8] Balacin O, HoffmannWA, Jonas J J. Metall Mater Trans, 2000; 31A: 1353
[9] Evangelista E, McQueen H J, Niewczas M, Cabibbo M. Can Metall Q, 2004; 43: 339
[10] Cabrera J M, Mateo A, Llanes L, Prado J M, Anglada M. J Mater Process Technol, 2003; 143–144: 321
[11] Reis G S, Jorge A M, Balancin O. Mater Res, 2000; 3: 31
[12] Cizek P, Wynne B P. Mater Sci Eng, 1997; A230: 88
[13] Dehghan–Manshadi A, Barnett M R, Hodgson P D. Mater Sci Technol, 2007; 23: 1478
[14] Dehghan–Manshadi A, Hodgson P D. J Mater Sci, 2008; 43: 6272
[15] Duprez L, de Cooman B C, Akdut N. Metall Mater Trans, 2002; 33A: 1931
[16] Jinmenze J A, Carreno F, Ruano O A. Mater Sci Technol, 1999; 15: 127
[17] Hernandez L E, Beynon J H, Christophe P, Sybrand Z. Steel Res Int, 2005; 76: 137
[18] Imbert C, Ryan N D, McQueen H J. Metall Mater Trans, 1984; 15A: 1855
[19] Milovic C, Manojlovic D. Andjelic M, Drobnjak D. Steel Res, 1992; 63: 78
[20] Wang B Z, Fu W T, Lv Z Q, Jiang P, Zhang W H, Tian Y J. Mater Sci Eng, 2008; A487: 108

[1] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[3] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[5] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[6] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[7] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[8] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[9] 陈果, 王新波, 张仁晓, 马成悦, 杨海峰, 周利, 赵运强. 搅拌头转速对2507双相不锈钢搅拌摩擦加工组织及性能的影响[J]. 金属学报, 2021, 57(6): 725-735.
[10] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[11] 刘庆琦, 卢晔, 张翼飞, 范笑锋, 李瑞, 刘兴硕, 佟雪, 于鹏飞, 李工. Al19.3Co15Cr15Ni50.7高熵合金的热变形行为[J]. 金属学报, 2021, 57(10): 1299-1308.
[12] 刘超, 姚志浩, 江河, 董建新. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制[J]. 金属学报, 2021, 57(10): 1309-1319.
[13] 周丽, 李明, 王全兆, 崔超, 肖伯律, 马宗义. 31%B4Cp/6061Al复合材料的热变形及加工图的研究[J]. 金属学报, 2020, 56(8): 1155-1164.
[14] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[15] 邓亚辉, 杨银辉, 蒲超博, 倪珂, 潘晓宇. Mn23%CrNi型双相不锈钢高温拉伸行为的影响[J]. 金属学报, 2020, 56(7): 949-959.