Please wait a minute...
金属学报  2009, Vol. 45 Issue (8): 906-911    
  论文 本期目录 | 过刊浏览 |
ECAP变形下304L奥氏体不锈钢的形变诱导马氏体相变
杨钢1; 黄崇湘2;  吴世丁2;  张哲峰2
1.钢铁研究总院结构材料研究所; 北京 100081
2.中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳 110016
STRAIN--INDUCED MARTENSITIC TRANSFORMATION IN 304L AUSTENITIC STAINLESS STEEL UNDER ECAP DEFORMATION
YANG Gang1; HUANG Chongxiang2; WU Shiding2; ZHANG Zhefeng2
1.Central Iron and Steel Research Institute; Beijing 100081
2.Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

杨钢 黄崇湘 吴世丁 张哲峰. ECAP变形下304L奥氏体不锈钢的形变诱导马氏体相变[J]. 金属学报, 2009, 45(8): 906-911.
, , . STRAIN--INDUCED MARTENSITIC TRANSFORMATION IN 304L AUSTENITIC STAINLESS STEEL UNDER ECAP DEFORMATION[J]. Acta Metall Sin, 2009, 45(8): 906-911.

全文: PDF(2958 KB)  
摘要: 

研究了304L奥氏体不锈钢在严重塑性变形(等通道转角挤压, ECAP)下发生形变诱导马氏体转变的微观特征, 包括形核特征、长大方式和相变晶体学, 探讨了粗大晶粒和亚微米晶粒发生马氏体相变的异同和微观机理. 结果表明: 粗大奥氏体晶粒发生相变时, 马氏体主要形核于微观剪切带(包括层错、变形孪晶和ε相等)的相互交割处, 马氏体与奥氏体之间为K---S(Kurduumov---Sachs)关系, 而不是西山(Nishiyama---Wassermann)关系; 亚微米奥氏体晶粒发生相变时, 马氏体则多在奥氏体晶界处形核, 马氏体与奥氏体之间仍为K---S关系.

关键词 奥氏体不锈钢 等通道转角挤压 亚微米晶 马氏体相变 微观机理    
Abstract

The strain–induced martensitic transformation (SIMT) is considered to be an effective route to enhance the mechanical properties of metastable austenitic steels. Recently, it was found that the SMIT was favourable for the formation of nanocrystalline microstructures in some austenitic steels and titanium alloys, by using the technique of severe plastic deformation (SPD) for grain refinement. It is well known that austenitic stainless steel is sensitive to martensite transformation under plastic deformation at low temperature. However, the mechanisms of SIMT in austenitic stainless steel (AISI 304 series) under SPD, particularly the transformation mechanisms in small grains with sizes of submicronmeter and nanometer, are still lack of investigation. Equal channel angular pressing (ECAP) is one of the popular methods of SPD, which can produce bulk nanostructured metallic materials without any reduction in the cross–sectional area of specimen. It has been clarified that the shear deformation imposed by ECAP was the most effective route to trigger SIMT in austenitic stainless steel in comparison with uniaxial tension and compression. In this paper, the SIMT in 304L austenitic stainless steel was invesigated under ECAP deformation at room temperature, in order to reveal the mechanisms of nucleation, grwth and crystallography of strain–induced martensite. The microstructures of strain–induced martensite during ECAP deformation were carefully examined by X–ray diffraction and transmission eectron microscope (TEM). It was found that in the case of coarse austenitic grains, the strain–induced marteniste nucleated at the intersection of deformation bands (including the bundles of stacking faults, deformation twins and platelets of epsilon phase) and kept the K–S (Kurdjumov–Sachs) but not the Nishiyama–Wassermann orientation relationships with austenitic grains. While in the case of small austenitic grains with sizes of several hundred nanometers, the strain–induced martensite preferred to nucleate at grain boundaries and grew up via swallowing the matrix of austenite. The martensitic grains followed the K–S crystallographic relationships with austenite too. Furthermore, the new nanocrystallne martensitic grains were easily rotated against each other by shear deformation, which prevented the coalescence of martensitic grains and was beneficial for the formation of nanocrystalline stuctures. Accoring to the K–S orientation relationship, the {110} planes of martensite are converted from the {111} lanes of austenite, keeping the <110> direction of martensite parallel to the <111> direction of austenite as well. The difference and mechanism of SIMT occurring in coarse austenitic grains and submicron austenitic grains were discussed in detail.

Key wordsaustenitic stainless steel    equal channel angular pressing    submicron grain    martensitic transformation    microscopic mechanism
收稿日期: 2009-01-04     
ZTFLH: 

TG113

 
基金资助:

国家自然科学基金资助项目50701047

作者简介: 杨钢, 男, 1963年生, 教授级高工, 博士

[1] Xu Z Y. Martensite Transformation and Martensite. Beijing: China Science Press, 1980: 1
(徐祖耀. 马氏体相变与马氏体. 北京: 科学出版社, 1980: 1)
[2] Oettel H, Martin U. Inter J Mater Res, 2006; 97: 1642
[3] Spencer K, Embury J D, Conlon K T, Veron M, Brechet Y. Mater Sci Eng, 2004, A387: 873
[4] Ma Y Q, Jin J E, Lee Y K. Scr Mater, 2005; 52: 1311
[5] Tao K X, Choo H, Li H Q, Clausen B, Jin J E, Lee Y K. Appl Phys Lett, 2007; 90: 101911
[6] Zhang H W, Hei Z K, Liu G, Lu J, Lu K. Acta Mater, 2003; 51: 1871
[7] Huang C X, Gao Y L, Yang G, Wu S D, Li G Y, Li S X. J Mater Res, 2006; 21: 1687
[8] Huang C X, Yang G, Gao Y L, Wu S D, Li S X, Zhang Z F. Philos Mag, 2007; 87: 4949
[9] Valiev R Z, Longdon T G. Prog Mater Sci, 2006; 51: 881
[10] Mangonon P L, Thomas G. Metall Trans, 1970; 1: 1577
[11] Venables J A. Phil Mag, 1962; 7: 35
[12] Shin H C, Ha T K, Park W J, Chang Y W. Key Eng Mater, 2003; 233–236: 667
[13] Kurdjumov G V, Sachs G. Z Phys, 1930; 64: 325
[14] Huang C X, Yang G, Gao Y L, Wu S D, Li S X. J Mater Res, 2007; 22: 724
[15] Nishiyama Z. Sci Rep Res Inst Tohoku Univ, 1934–35; 23: 638
[16] Wassermann G. Arch Eisenh¨uttenwes, 1933; 16: 647
[17] Guo K X, Ye H Q, Wu Y K. Electrical Diffraction. Institute of Metal Research, 1980: 1
(郭可信, 叶恒强, 吴玉琨. 电子衍射图. 金属研究所, 1980: 1)
[18] Staudhammer K P, Murr L E, Hecker S S. Acta Metall, 1983; 31: 267
[19] Novillo E, Hernandez D, Gutierrz I, Lopez B. Mater Sci Eng, 2004, A385: 83
[20] Shan Z W, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M, Mao S X. Science, 2004; 305: 654
[21] Olson G B, Cohen M. Metall Trans, 1976; 7A: 1905
[22] Bogers A J, Burgers W G. Acta Metall, 1964; 12: 255

[1] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[2] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[3] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[4] 李伟, 贾兴祺, 金学军. 高强韧QPT工艺的先进钢组织调控和强韧化研究进展[J]. 金属学报, 2022, 58(4): 444-456.
[5] 郑椿, 刘嘉斌, 江来珠, 杨成, 姜美雪. 拉伸变形对高氮奥氏体不锈钢显微组织和耐腐蚀性能的影响[J]. 金属学报, 2022, 58(2): 193-205.
[6] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[7] 潘庆松, 崔方, 陶乃镕, 卢磊. 纳米孪晶强化304奥氏体不锈钢的应变控制疲劳行为[J]. 金属学报, 2022, 58(1): 45-53.
[8] 曹超, 蒋成洋, 鲁金涛, 陈明辉, 耿树江, 王福会. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为[J]. 金属学报, 2022, 58(1): 67-74.
[9] 王金亮, 王晨充, 黄明浩, 胡军, 徐伟. 低应变预变形对变温马氏体相变行为的影响规律及作用机制[J]. 金属学报, 2021, 57(5): 575-585.
[10] 李索, 陈维奇, 胡龙, 邓德安. 加工硬化和退火软化效应对316不锈钢厚壁管-管对接接头残余应力计算精度的影响[J]. 金属学报, 2021, 57(12): 1653-1666.
[11] 左良, 李宗宾, 闫海乐, 杨波, 赵骧. 多晶Ni-Mn-X相变合金的织构化与功能行为[J]. 金属学报, 2021, 57(11): 1396-1415.
[12] 肖飞, 陈宏, 金学军. 形状记忆合金弹热制冷效应的研究现状[J]. 金属学报, 2021, 57(1): 29-41.
[13] 彭云,宋亮,赵琳,马成勇,赵海燕,田志凌. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618.
[14] 蒋一,程满浪,姜海洪,周庆龙,姜美雪,江来珠,蒋益明. 高强度含NNi奥氏体不锈钢08Cr19Mn6Ni3Cu2N (QN1803)的显微组织及性能[J]. 金属学报, 2020, 56(4): 642-652.
[15] 张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.