|
|
新型多层金属复合材料的制备与性能 |
张乐1,2,王威1,3( ),M. Babar Shahzad1,单以银1,3,杨柯1 |
1. 中国科学院金属研究所 沈阳 110016 2. 中国科学技术大学材料科学与工程学院 沈阳 110016 3. 中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016 |
|
Fabrication and Properties of Novel Multi-LayeredMetal Composites |
ZHANG Le1,2,WANG Wei1,3( ),M. Babar Shahzad1,SHAN Yiyin1,3,YANG Ke1 |
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2. School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
张乐,王威,M. Babar Shahzad,单以银,杨柯. 新型多层金属复合材料的制备与性能[J]. 金属学报, 2020, 56(3): 351-360.
Le ZHANG,
Wei WANG,
Shahzad M. Babar,
Yiyin SHAN,
Ke YANG.
Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. Acta Metall Sin, 2020, 56(3): 351-360.
[1] | Mazínová I, Florian P. Modern Methods of Construction Design [M]. Cham: Springer, 2014: 145 | [2] | Jackson A P, Vincent J F V, Turner R M. The mechanical design of nacre [J]. Proc. Roy. Soc., 1988, 234B: 415 | [3] | Xu L P, Peng J T, Liu Y B, et al. Nacre-inspired design of mechanical stable coating with underwater superoleophobicity [J]. ACS Nano, 2013, 7: 5077 | [4] | Rodrigues J R, Alves N M, Mano J F. Nacre-inspired nanocomposites produced using layer-by-layer assembly: Design strategies and biomedical applications [J]. Mater. Sci. Eng., 2017, C76: 1263 | [5] | Gerhard E M, Wang W, Li C Y, et al. Design strategies and applications of nacre-based biomaterials [J]. Acta Biomater., 2017, 54: 21 | [6] | Chen C T, Martin-Martinez F J, Ling S J, et al. Nacre-inspired design of graphene oxide-polydopamine nanocomposites for enhanced mechanical properties and multi-functionalities [J]. Nano Futures, 2017, 1: 011003 | [7] | She J H, Inoue T, Ueno K. Fabrication and characterization of multilayer alumina-based composites with improved fracture behavior [J]. Mater. Lett., 2000, 42: 155 | [8] | Bouaziz O, Masse J P, Petitgand G, et al. A novel strong and ductile TWIP/martensite steel composite [J]. Adv. Eng. Mater., 2016, 18: 56 | [9] | Daneshvar F, Reihanian M, Gheisari K. Al-based magnetic composites produced by accumulative roll bonding (ARB) [J]. Mater. Sci. Eng., 2016, B206: 45 | [10] | Liu B X, Huang L J, Geng L, et al. Microstructure and tensile behavior of novel laminated Ti-TiBw/Ti composites by reaction hot pressing [J]. Mater. Sci. Eng., 2013, A583: 182 | [11] | Naseri M, Reihanian M, Borhani E. Bonding behavior during cold roll-cladding of tri-layered Al/brass/Al composite [J]. J. Manuf. Processes, 2016, 24: 125 | [12] | Leedy K D, Stubbins J F. Copper alloy-stainless steel bonded laminates for fusion reactor applications: Tensile strength and microstructure [J]. Mater. Sci. Eng., 2001, A297: 10 | [13] | Zu G Y, Wang N, Yu J M, et al. Research on bonding mechanism of composite cold rolling plate of stainless steel/steel [J]. Res. Iron Steel, 2004, 32(4): 32 | [13] | 祖国胤, 王 宁, 于九明等. 不锈钢/碳钢冷轧复合机理的研究 [J]. 钢铁研究, 2004, 32(4): 32 | [14] | Xie Z X, Liu Q Y, Yang J H, et al. Effect of microalloying element Mo on dynamic recrystallization of microalloyed steels [J]. J. Iron Steel Res., 2009, 21(1): 33 | [14] | 谢志翔, 刘清友, 杨景红等. 微量钼对微合金钢动态再结晶的影响 [J]. 钢铁研究学报, 2009, 21(1): 33 | [15] | Song R B, Xiang J Y, Hou D P, et al. Behavior and mechanism of hot work-hardening for 316L stainless steel [J]. Acta Metall. Sin., 2010, 46: 57 | [15] | 宋仁伯, 项建英, 侯东坡等. 316L不锈钢热加工硬化行为及机制 [J]. 金属学报, 2010, 46: 57 | [16] | Zu G Y. Theories and Technologies of Preparation Layered Metal Composite [M]. Shenyang: Northeastern University Press, 2013: 15 | [16] | 祖国胤. 层状金属复合材料制备理论与技术 [M]. 沈阳: 东北大学出版社, 2013: 15 | [17] | Mozaffari A, Hosseini M, Manesh H D. Al/Ni metal intermetallic composite produced by accumulative roll bonding and reaction annealing [J]. J. Alloys Compd., 2011, 509: 9938 | [18] | Kümmel F, Haus?l T, H?ppel H W, et al. Enhanced fatigue lives in AA1050A/AA5005 laminated metal composites produced by accumulative roll bonding [J]. Acta Mater., 2016, 120: 150 | [19] | Kum D W, Oyama T, Wadsworth J, et al. The impact properties of laminated composites containing ultrahigh carbon (UHC) steels [J]. J. Mech. Phys. Solids, 1983, 31: 173 | [20] | Wadsworth J, Lesuer D R. Ancient and modern laminated composites——From the great pyramid of gizeh to Y2K [J]. Mater. Charact., 2000, 45: 289 | [21] | Roy S, Nataraj B R, Suwas S, et al. Accumulative roll bonding of aluminum alloys 2219/5086 laminates: Microstructural evolution and tensile properties [J]. Mater. Des., 2012, 36: 529 | [22] | Yu H L, Lu C, Tieu A K, et al. Annealing effect on microstructure and mechanical properties of Al/Ti/Al laminate sheets [J]. Mater. Sci. Eng., 2016, A660: 195 | [23] | Jha S C, Delagi R G, Forster J A, et al. High-strength high-conductivity Cu-Nb microcomposite sheet fabricatedvia multiple roll bonding [J]. Metall. Trans., 1993, 24A: 15 | [24] | Zhang X P, Yang T H, Castagne S, et al. Microstructure; bonding strength and thickness ratio of Al/Mg/Al alloy laminated composites prepared by hot rolling [J]. Mater. Sci. Eng., 2011, A528: 1954 | [25] | Pardal J M, Tavares S S M, Fonseca M P C, et al. Influence of temperature and aging time on hardness and magnetic properties of the maraging steel grade 300 [J]. J. Mater. Sci., 2007, 42: 2276 | [26] | Tanhaei S, Gheisari K, Zaree S R A. Effect of cold rolling on the microstructural, magnetic, mechanical, and corrosion properties of AISI 316L austenitic stainless steel [J]. Int. J. Miner. Metall. Mater., 2018, 25: 630 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|