Please wait a minute...
金属学报  2009, Vol. 45 Issue (8): 912-918    
  论文 本期目录 | 过刊浏览 |
Ag3Sn粗化模型及其对Sn-Ag-Cu焊料蠕变的影响
王小京1; 祝清省1; 王中光1; 尚建库1;2
1. 中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳 110016
2. Department of Materials Science and Engineering; University of Illinois at Urbana--Champaign; Urbana;  IL61801; USA
MODELING OF Ag3Sn COARSENING AND ITS EFFECT ON CREEP IN Sn-Ag-Cu SOLDER
WANG Xiaojing1; ZHU Qingsheng 1; WANG Zhongguang1; SHANG Jianku1;2
1. Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
2. Department of Materials Science and Engineering; University of Illinois at Urbana--Champaign; Urbana; IL61801; USA
引用本文:

王小京 祝清省 王中光 尚建库. Ag3Sn粗化模型及其对Sn-Ag-Cu焊料蠕变的影响[J]. 金属学报, 2009, 45(8): 912-918.
, . MODELING OF Ag3Sn COARSENING AND ITS EFFECT ON CREEP IN Sn-Ag-Cu SOLDER[J]. Acta Metall Sin, 2009, 45(8): 912-918.

全文: PDF(2231 KB)  
摘要: 

本文用位错蠕变模型, 描述了在电流作用下, 无铅焊料Sn-Ag-Cu(SAC)中第二相粒子Ag3Sn的粗化过程及其对蠕变速率的影响. 模型中焊料组织被简化为: β-Sn母相基体和在基体上弥散分布的Ag3Sn第二相粒子. 基于Lifshitz--Wagner理论, 得到了描述第二相粒子尺寸演化的关系式, 式中包括稳态应变和电流作用引起的两部分粗化.

关键词 无铅焊料 粒子粗化 电流    
Abstract

Coarsening of the microstructure in Sn–Ag–Cu (SAC) solder joints under current stressing was bserved experimentally and modeled by a disocation–creep model which incorporates te carsening f second pase particles in lead–free solder aoys. Both the effects of electric current and strain–enhanced coarsening were conidered in thimodel. The straining effect took into account of both the inelastic–strain hstory and hydrostatic constraint. The model describes well the evolution of thutectic microstructure and the predictions of the model agree reasonably well with experimentally observed trends.

Key wordsPb–free solder    article coarsening    electric current
收稿日期: 2009-02-27     
ZTFLH: 

TB302.3

 
基金资助:

国家重点基础研究发展计划资助项目2004CB619306

作者简介: 王小京, 女, 1977年生, 博士生

[1] Atkinson H V. Acta Metall, 1988; 36: 469
[2] Thornton K, Ågren J, Voorhees P W. Acta Mater, 2003; 51: 5675
[3] Bray A J, Adv Phys, 2002; 51: 481
[4] Matin M A, Vellinga W P, Geers M G D. Acta Metall, 2004; 52: 3475
[5] Conrad H, Guo Z, Fahmy Y, Yang D. J Electron Mater, 1999; 28: 1062
[6] Vianco P T, Burchett S N, Neilsen M K, Rejent J A, Frear D R. J Electron Mater, 1999; 28: 1290
[7] Hacke P L, Fahmy Y, Conrad H. J Electron Mater, 1998; 27: 941
[8] Frear D, Burchett B, Neisen M, Stephens J. Solder Surf Mount Technol, 1997; 25: 39
[9] LaLonde A, Emelande D, Jeannette J, Larson C, Rietz W, Swenson D, Henderson D W. J Electron Mater, 2004; 33: 1545
[10] Lehman L P, Athavale S N, Fullem T Z, Giamis A C, Kinyanjui R K, Lowenstein M, Mather K, Patel R, Rae D, Wang J, Xing Y, Zavalij L, Borgesen P, Cotts E J. J Electron Mater, 2004; 33: 1429
[11] Bieler T R, Telang A U, Lucas J P, Subramanian K N, Lehman L P, Xing Y, Cotts E J. J Electron Mater, 2004; 33: 1412
[12] Dutta I. J Electron Mater, 2003; 32: 201
[13] Gong J C, Liu C Q, Conway P P, Silberschmidt V V. Mater Sci Eng, 2006; A427: 60
[14] Dutta I, Pan D, Marks R A, Jadhav S G. Mater Sci Eng, 2005; A410–411: 48
[15] Qi L, Huang J, Zhao X, Zhang H. J Alloys Compd, 2009; 469: 102
[16] Blech I A. J Appl Phys, 1976; 47: 1203
[17] Gan H, Tu K N. IEEE Proc 52nd Electronic Components and Technology Conference, 28–31 May 2002, San Diego, California: IEEE, 2002: 1206
[18] Gan H, Choi W J, Xu G, Tu K N. J Miner Met Mater Soc, 2002; 54: 34
[19] Ren F, Nah J W, Tu K N, Xiong B S, Pang L H L. Appl Phys Lett, 2006; 89: 141914
[20] Wagner C. Z Electrochem. 1961; 65: 581
[21] Lifshitz I M, Slyozov V V. J Phys Chem Solids, 1961; 19: 35
[22] Clark M A, Alden T H. Acta Metall, 1973; 21: 1195
[23] Senkov O N, Myshlyaev M M. Acta Metall. 1986; 34: 97
[24] Sarychev M E, Zhinikov Y V. J Appl Phys, 1999; 86: 3068
[25] Kim K S, Huh S H, Suganuma K. Mater Sci Eng, 2002; A333: 106
[26] Shen J, Liu Y C, Han Y J, Zhang P Z, Gao H X. J Mater Sci Technol, 2005; 21: 827
[27] Korhonen T M K, Turpeinen P, Lehman L P, Bowman B, Thiel G H, Parkes R C, Korhonen M, Henderson D W, Puttlitz K J. J Electron Mater, 2004; 33: 1581
[28] Evan R W, Wilshire B. Creep of Metals and Alloys, London: Institute of Metals, 1985: 104
[29] Darveaux R, Banerji K. IEEE Trans Comp, Hybrids, Manuf, Technol, 1992; 15: 1013
[30] Igoshev V I, Kleiman J I. J Electron Mater, 2000; 29: 244
[31] Ansell G S, Weertman J. Trans Metall Soc AIME, 1959; 215: 838
[32] Jung K, Conrad H. J Electron Mater, 2001; 30: 1294
[33] Jung K, Conrad H. J Electron Mater, 2001; 30: 1303
[34] Jung K, Conrad H. J Electron Mater, 2001; 30: 1308
[35] Vianco P T, Burchett S N, Neilsen M K, Rejent J A, Frear D R. J Electron Mater, 1999; 28: 1290
[36] Mei Y, Chow C L, Fang H E, Neilsen M K, Lim T J, Lu W. J Electron Packaging, 2004; 126: 100
[37] Senkov O N, Myshlyaev M M. Acta Metall, 1986; 34: 97
[38] Yeh E C C, Choi W J, Tu K N, Elenius P, Balkan H. Appl Phys Lett, 2002; 80: 580
[39] Darveaux R, Banerji K. IEEE Trans Comp, Hybrids, Manuf, Technol, 1992; 15: 1013
[40] Balzer R, Sigvaldason H. Phys Status Solidi, 1979; 92B: 143
[41] Clement J J, Thompson C V. J Appl Phys, 1995; 78: 900
[42] Basaran C, Lin M. Int J Solids Stuct, 2007; 44: 4909

[1] 张新房, 向思奇, 易坤, 郭敬东. 脉冲电流调控金属固体中的残余应力[J]. 金属学报, 2022, 58(5): 581-598.
[2] 王富强, 刘伟, 王兆文. 铝电解槽中局部阴极电流增大对电解质-铝液两相流场的影响[J]. 金属学报, 2020, 56(7): 1047-1056.
[3] 张新房, 闫龙格. 脉冲电流调控金属熔体中的非金属夹杂物[J]. 金属学报, 2020, 56(3): 257-277.
[4] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
[5] 马荣耀, 赵林, 王长罡, 穆鑫, 魏欣, 董俊华, 柯伟. 静水压力对金属腐蚀热力学及动力学的影响[J]. 金属学报, 2019, 55(2): 281-290.
[6] 时惠英, 杨超, 蒋百灵, 黄蓓, 王迪. 双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J]. 金属学报, 2018, 54(6): 927-934.
[7] 秦润之, 杜艳霞, 路民旭, 欧莉, 孙海明. 高压直流干扰下X80钢在广东土壤中的干扰参数变化规律及腐蚀行为研究[J]. 金属学报, 2018, 54(6): 886-894.
[8] 陈占兴,丁宏升,刘石球,陈瑞润,郭景杰,傅恒志. 直流电流对Ti-48Al-2Cr-2Nb合金组织和性能的影响[J]. 金属学报, 2017, 53(5): 583-591.
[9] 赵林, 穆鑫, 董俊华, 伍立坪, 王长罡, 柯伟. AH32长尺试样在模拟海洋潮差区腐蚀行为的电偶电流研究[J]. 金属学报, 2017, 53(11): 1445-1452.
[10] 吴铭方,刘飞,王凤江,乔岩欣. 陶瓷基复合材料辅助脉冲电流液相扩散连接的界面反应及接头强化机制[J]. 金属学报, 2015, 51(9): 1129-1135.
[11] 刘政, 刘小梅, 朱涛, 谌庆春. 低频电磁搅拌对半固态铝合金中稀土分布的影响[J]. 金属学报, 2015, 51(3): 272-280.
[12] 吴铭方, 匡泓锦, 王凤江, 林红香, 胥国祥. Zr/Cu/Zr部分瞬间液相焊扩散连接Ti(C, N)-Al2O3陶瓷基复合材料*[J]. 金属学报, 2014, 50(5): 619-625.
[13] 吴忠振, 田修波, 潘锋, 付劲裕, 朱剑豪. 不同靶材料的高功率脉冲磁控溅射放电行为[J]. 金属学报, 2014, 50(10): 1279-1284.
[14] 刘玉,李焰,李强. 阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响[J]. 金属学报, 2013, 49(9): 1089-1097.
[15] 李绪亮,张迎春,江凡,王莉莉,刘艳红,孙宁波. 电流密度对V-4Cr-4Ti合金基体上电沉积W涂层显微结构的影响[J]. 金属学报, 2013, 49(6): 745-750.