Please wait a minute...
金属学报  2009, Vol. 45 Issue (4): 434-441    
  论文 本期目录 | 过刊浏览 |
细晶Ti--2Al--2.5Zr合金室温/低温低周疲劳行为及微观结构
王航;徐燕灵;孙巧艳;肖林;孙军
西安交通大学金属材料强度国家重点实验室; 西安 710049
LOW CYCLE FATIGUE BEHAVIORS AND MICROSTRUCTURES OF Ti–2Al–2.5Zr WITH FINE GRAIN AT RT AND 77 K
WANG Hang; XU Yanling; SUN Qiaoyan; XIAO Lin; SUN Jun
State Key Laboratory for Mechanical Behavior of Materials; Xi’an Jiaotong University; Xi’an 710049
引用本文:

王航 徐燕灵 孙巧艳 肖林 孙军. 细晶Ti--2Al--2.5Zr合金室温/低温低周疲劳行为及微观结构[J]. 金属学报, 2009, 45(4): 434-441.
, , , , . LOW CYCLE FATIGUE BEHAVIORS AND MICROSTRUCTURES OF Ti–2Al–2.5Zr WITH FINE GRAIN AT RT AND 77 K[J]. Acta Metall Sin, 2009, 45(4): 434-441.

全文: PDF(2755 KB)  
摘要: 

对细晶Ti--2Al--2.5Zr合金进行了室温/低温(77 K)疲劳实验及微观组织观察. 结果表明: 室温低应变幅Δεt/2(=0.5%, 1.0%)下,合金表现为循环软化; 室温高应变幅(1.5%, 2.0%)下, 则表现为循环应力饱和; 77 K时, 不同应变幅下均表现为循环硬化, 且随应变幅升高, 循环硬化程度增强. 疲劳寿命测试结果表明: 低温疲劳寿命始终高于室温. 断口SEM观察表明, 室温和低温下, 疲劳裂纹扩展区均有明显的疲劳条纹,疲劳裂纹以穿晶方式扩展, 室温下伴随有大量二次裂纹, 低温下的二次裂纹数量明显减少. TEM观察表明: 低温下孪生是合金主要的变形方式, 包括{1011}和{1121}型孪晶. 疲劳变形位错组态为: 室温较低应变幅(0.5%, 1.0%)下, 形成位错线和局部位错缠结; 室温下应变幅提高到1.5%和2.0%时,\{1010}柱面和{1121}锥面滑移同时开动, 位错组态演化为亚晶和明显的位错胞. 77 K下, 应变幅2.0%时形成沿 柱面平行分布的位错带; 77 K下应变幅升高到4.5%时, 多滑移形成相互垂直的位错线. 低温诱发形变孪晶是Ti--2Al--2.5Zr低温疲劳寿命升高的原因.

关键词 Ti--2Al--2.5Zr 细晶 低周疲劳 位错 孪晶    
Abstract

Ti–2Al–2.5Zr alloy with hcp structure is a kind of structural materials used under low temperature condition, e.g. pipeline system of liquid hydrogen and liquid oxygen in missile engine. It is usually serviced in condition of severe low temperature and dynamic loading. Deformation twinning is a common and important plastic deformation mode in the hexagonal close–packed alloy, but will be severely restricted as the grain is refined from tens of microns to a few microns. On the other hand, twinning has a low sensitivity to temperature, consequently becomes a favorable deformation mode at low temperature in comparison with dislocation slip. The objective of this work is to study the coupling effect of grain refinement and testing temperature on twinning behavior and the low–cycle fatigue behavior of Ti–2Al–2.5Zr. Symmetrical push–pull low–cycle fatigue (LCF) tests were performed on Ti–2Al–2.5Zr with grain size of about 5 μm at room temperature (RT) and low temperature (77 K). The results show that the alloy exhibits the higher ductility and the longer low–cycle fatigue life at 77 K than those at RT. The cyclic stress response curves show that the cyclic softening occurs at the low strain amplitudes of 0.5% and 1.0%. However, as strain amplitude increased to 1.5% and 2.0%, cyclic stress saturation appeared. When testing temperature declined to 77 K, the cyclic hardening was observed at all four strain amplitudes. The degree of cyclic  ardening increases as the strain amplitude rises. The fractography analyses suggest that transgranular fracture with well–developed fatigue striations is the predominant failure mode. The amount of secondary cracks is much higher in the alloys deformed at RT than that at 77 K. TEM examination reveals that deformation twins become more active. The primary types of twinning are {1011} and {1121}. The typical deformation microstructures consist of individual dislocation lines together with the tangled dislocation at the low strain amplitudes of 0.5% and 1.0%. As the strain amplitude increased to 1.5% and 2.0%, {1010}prismatic slip and {1121} pyramidal slip were simultaneously activated, the subgrain and dislocation cells were formed. At 77 K and strain amplitude of 2.0%, the parallel dislocation bands distribute along prismatic plane. As the strain amplitude increased to 0.5%, utual perpendicular dislocation lines appeared. The improvement of fatigue life of Ti–2Al–2.5Zr at 77 K is attributed to the constraint of inhomogeneous slip and the activation of deformation twinning.

Key wordsTi--2Al--2.5Zr    fine grain    low--cycle fatigue    dislocation    twinning
收稿日期: 2008-10-10     
ZTFLH: 

TG111.8

 
基金资助:

国家重点基础研究发展计划项目2007CB386104和2004CB619303及国家自然科学基金项目50671077和50771080资助

作者简介: 王航, 男, 1978 年生, 博士生

[1] Yu Z T, Zhou L, Deng J, Gu H C. Rare Met Mater Eng, 1999; 28: 340
(于振涛, 周 廉, 邓 炬, 顾海澄. 稀有金属材料与工程, 1999; 28: 340)
[2] Yu Z T. Nonferrous Smelting, 2002; 31(6): 182
(于振涛. 有色冶炼, 2006; 31(6): 182)
[3] Yu Z T, Zhou L, Deng J, Gu H C. Rare Met Mater Eng, 2000; 29: 86
(于振涛, 周 廉, 邓炬, 顾海澄. 稀有金属材料与工程, 2000; 29: 86)
[4] Venables J A. In: Reed–Hill R E, Hirth J P, Rogers H C, eds. Deformation Twinning. New York: Gordon and Breach, 1964: 7
[5] Meyers M A, V¯ohringer O, Lubarda V A. Acta Mater, 2001; 49: 4025
[6] Harding J. Proc R Soc London, 1967; 299A: 464
[7] Bolling G F, Richman R H. Acta Metall, 1965; 13: 709
[8] Chen M, Ma E, Hemker K J, Sheng H W, Wang Y M, Cheng X M. Science, 2003; 300: 1275
[9] Huang C X, Wang K, Wu S D, Zhang Z F, Li G Y, Li S X. Acta Mater, 2006; 54: 655
[10] Wu X L, Ma E. Appl Phys Lett, 2006; 88: 195
[11] Ueji R, Tsuchida N, Terada D, Tsuji N, Tanaka Y, Takemura A, Kunishige K. Scr Mater, 2008; 59: 963
[12] Meyers M A, Andrade U R, Chokshi A H. Metall Mater Trans, 1995; 26A: 2881
[13] Levine E D. Trans Met Soc AIME, 1996; 236: 1558
[14] Song S G, GrayIII G T. Acta Metall Mater, 1995; 43: 2325
[15] Christan J W, Mahajan S. Prog Mater Sci, 1995; 39: 84
[16] Tsuji N, Ito Y, Saito Y, Minamino Y. Scr Mater, 2002; 47: 893
[17] Hirth J P, Lothe J. Theory of Dislocations. 2nd ed, Malabar, UK: Krieger Publishing, 1992: 650
[18] Laird C, Stanzl S, de La Veaux R, Buchinger L. Mater Sci Eng, 1986; 80: 143
[19] Xiao L, Kuang Z B. Acta Mater, 1996; 44: 3059
[20] Bacon D J, Martin J W. Philos Mag, 1981; 43: 883
[21] Lagerlf K P D, Castaing J, Pirouz P, Heuer A H. Philos Mag, 2002; 82: 2841
[22] Xiao L, Umakoshi Y, Sun J. Metall Mater Trans, 2001; 32A: 2841
[23] Nilsson J O. Scr Metall, 1983; 17: 593
[24] Li X W, Wu X M, Wang Z G, Umakoshi Y. Metall Mater Trans, 2003; 34A: 307
[25] Starke E A, Lutjering G Jr. Fatigue and Microstructure, Metals Park, OH: ASM, 1978: 14
[26] Jouiad M, Clement N, Coujou A. Philos Mag, 1998; 77A:689
[27] Heino S, Karlsson B. Acta Mater, 2001; 49: 353
[28] Steffens Th, Schwink Ch, Korner A, Karnthaler H P. Philos Mag, 1987; 56: 161
[29] Partridge P G. Metall Rev, 1967; 118: 175
[30] Christian J W, Mahajan S. Prog Mater Sci, 1995; 39: 1
[31] Yoo M H, Wei C T. Philos Mag, 1966; 14: 573
[32] Tomsett D I, Bevis A. Philos Mag, 1969; 19: 533
[33] Yoo M H. Metall Trans, 1981; A12: 409
[34] Ehab E D, Surya R K, Roger D D. Metall Mater Trans, 1999; 30A: 1223
[35] Ayman A S, Surya R K, Roger D D. Scr Mater, 2002; 46: 419
[36] Ayman A S, Surya R K, Roger D D. Acta Mater, 2003; 51: 4225
[37] Mullins S, Mpatchett B. Metall Trans, 1981; 12A: 74
[38] Akhtar A. Metall Trans, 1975; 6A: 1105
[39] Beevers C J, Halliday M D. J Met Sci, 1969; 3: 74
[40] Byrne J G. Deformation Twinning. Gainsville: AIME Conf, 1963: 397

[1] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[4] 邵晓宏, 彭珍珍, 靳千千, 马秀良. 镁合金LPSO/SFs结构间{101¯2}孪晶交汇机制的原子尺度研究[J]. 金属学报, 2023, 59(4): 556-566.
[5] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[6] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[7] 朱云鹏, 覃嘉宇, 王金辉, 马鸿斌, 金培鹏, 李培杰. 机械球磨结合粉末冶金制备AZ61超细晶镁合金的组织与性能[J]. 金属学报, 2023, 59(2): 257-266.
[8] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[9] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[10] 周红伟, 高建兵, 沈加明, 赵伟, 白凤梅, 何宜柱. 高温低周疲劳下C-HRA-5奥氏体耐热钢中孪晶界演变[J]. 金属学报, 2022, 58(8): 1013-1023.
[11] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[12] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[13] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[14] 孙毅, 郑沁园, 胡宝佳, 王平, 郑成武, 李殿中. 3Mn-0.2C中锰钢形变诱导铁素体动态相变机理[J]. 金属学报, 2022, 58(5): 649-659.
[15] 卢磊, 赵怀智. 异质纳米结构金属强化韧化机理研究进展[J]. 金属学报, 2022, 58(11): 1360-1370.