Please wait a minute...
金属学报  2009, Vol. 45 Issue (4): 442-449    
  论文 本期目录 | 过刊浏览 |
锈层损伤对低碳贝氏体钢在含Cl-环境中腐蚀行为的影响
崔雷;  杨善武; 王树涛; 高克玮;  贺信莱
北京科技大学材料科学与工程学院; 北京 100083
EFFECT OF DAMNIFICATION IN RUST LAYER ON CORROSION BEHAVIORS OF LOWCARBON BAINITIC STEEL IN THE ENVIRONMENT CONTAINING Cl
CUI Lei; YANG Shanwu; WANG Shutao; GAO Kewei; HE Xinlai
School of Materials Science and Engineer; University of Science and Technology Beijing; Beijing 100083
引用本文:

崔雷 杨善武 王树涛 高克玮 贺信莱. 锈层损伤对低碳贝氏体钢在含Cl-环境中腐蚀行为的影响[J]. 金属学报, 2009, 45(4): 442-449.
, . EFFECT OF DAMNIFICATION IN RUST LAYER ON CORROSION BEHAVIORS OF LOWCARBON BAINITIC STEEL IN THE ENVIRONMENT CONTAINING Cl[J]. Acta Metall Sin, 2009, 45(4): 442-449.

全文: PDF(2579 KB)  
摘要: 

利用电化学、金相、能谱等方法, 研究了低碳贝氏体钢在表面锈层受到不同程度的损伤后, 在含Cl-环境中的继续腐蚀行为. 实验发现, 低碳贝氏体钢和作为对比材料的低碳钢试样的表面锈层受损伤后, 在继续腐蚀过程中均能很快得到修复. 在损伤程度与继续腐蚀时间相同的条件下, 低碳贝氏体钢的锈层电阻与损伤修复率均高于低碳钢. 低碳贝氏体钢基体/锈层界面的断裂韧性高于锈层本身.在受外界作用时, 锈层不会沿基体/锈层界面彻底脱落从而在基体表面保存残留锈层. 残留锈层能明显促进新锈层在损伤部位的形成. 原有锈层与损伤部位新形成的锈层中Cu和Cr含量接近, 并与钢基体的含量相当.

关键词 低碳贝氏体钢 锈层 损伤 自修复    
Abstract

The weatherability of weathering steel depends on the protection of the compact rust layers on its surface. However, the compact rust layers might be damaged when they were subject to external actions, for example, collision and scrape etc., which will influence the protective effect on steel base. It is deserved to put attention on further corrosion behavior of the samples with damaged rust layer, which will determine the long term corrosion property. In the present study, electrochemical measurement, metallographic observation and energy disperse spectrum analysis were employed to investigate the further corrosion behaviors of a low carbon bainitic steel in the environment containing Cl, after its original rust layers had been damaged on different degrees. It was found that the damnification of rust layers on both the low carbon bainitic steel and low carbon steel as a contrast could be rapidly self–repaired in the further corrosion process. When damnification degree and further corrosion time are the same, the resistance and the repair ratio of damaged rust layers on the low carbon bainitic steel are higher than those of the low carbon steel. The fracture toughness of the steel base/rust layer interface of the low carbon bainitic steel is higher than that of the rust layers, so the rust layers would not be abscised thoroughly from the interface and some residual rust would be remained when the steel is subjected to applied actions. The formation of new rust at the damaged sites can be significantly promoted by the residual rust. The contents of Cu and Cr in the original rust layers are close to those in the newly formed rust layers, and both of them are equivalent to those in the steel base. These results indicate that low carbon bainitic steel with excellent mechanical properties and weld ability is a potential candidate for novel weathering steels with higher strength.

Key wordslow carbon bainitic steel    rust layer    damnification    self–repair
收稿日期: 2008-10-08     
ZTFLH: 

TG172.3

 
基金资助:

国家重点基础研究发展计划资助项目2004CB619102

作者简介: 崔雷, 男, 1983生, 硕士生

[1] Zhao Z Y. The Design of Alloy Steels. Beijing: National Defense Industry Press, 1999: 106
(赵振业. 合金钢设计. 北京: 国防工业出版社, 1999: 106)
[2] Wang X M, Shang C J, Yang S W, He X L. Acta Metall Sin, 2002; 38: 661
(王学敏, 尚成嘉, 杨善武, 贺信莱. 金属学报, 2002; 38: 661)
[3] Shang C J, Wang X M, Yang S W, He X L, Wu H B. Acta Metall Sin, 2002; 39: 1019
(尚成嘉, 王学敏, 杨善武, 贺信莱, 武会宾. 金属学报, 2003; 39: 1019)
[4] Zhang Z G, Gu Z Y, Liao Y G, Guo Q L, Su F T, Chen Y Z. Electrochemistry, 2000; 6: 473
(张志刚, 辜志俊, 廖永贵, 郭琦龙, 苏方腾, 陈衍珍. 电化学, 2000; 6: 473)
[5] Tan Y J, Bailey S, Kinsella B. Corros Sci, 1996; 38: 1545
[6] Nishimura T, Kodama T. Corros Sci, 2003; 45: 1073
[7] Nishimura T, Tahara A, Kodama T. Mater Trans, 2001;42: 478
[8] Lin C, Li X G, Liu X D. J Chin Soc Corros Prot, 2005; 25: 4

(林翠, 李晓刚, 刘晓东. 中国腐蚀与防护学报, 2005; 25: 4)

[9] WanJ H, Wei F I, Chang Y S, Shih H C. Mater Chem Phys, 1997; 47: 1
[10] Han W, Wang J, Wang Z Y, Yu G C, Li H X. J Chin Soc Corros Prot, 2004; 24: 147
(韩 薇, 汪俊, 王振尧, 于国才, 李洪锡. 中国腐蚀与防护学报, 2004; 24: 147)
[11] Nishimura T, Katayama H, Noda K, Kodama T. Corrosion, 2000; 56: 935
[12] Wang S T, Yang S W, Gao K W, Shen X A, He X L. Acta Metall Sin, 2008; 44: 1116
(王树涛, 杨善武, 高克玮, 沈晓安, 贺信莱. 金属学报, 2008; 44: 1116)
[13] Liu L H, Qi H B, Lu Y P, Li X G. Corros Sci Technol Prot, 2003; 15: 86
(刘丽宏, 齐慧滨, 卢燕平, 李晓刚. 腐蚀科学与防护技术, 2003; 15: 86)
[14] Choi Y S, Shim J J, Kim J G. J Alloys Compd, 2005; 391: 162
[15] Chi Y S, Shim J J, Kim J G. Mater Sci Eng, 2004; A385: 148
[16] Zhang Q C, Wang J J, Wu J S, Zheng W L, Chen J G, Li A B. Acta Metall Sin, 2001; 37: 193
(张全成, 王建军, 吴建生, 郑文龙, 陈家光, 李爱柏. 金属学报, 2001; 37: 193)
[17] Matsushima I, Ueno T, Tamada A, Kubota H. Nippon Kokan Technol Rep, 1969; 46: 249
[18] Okada H, Hosoi Y, Yukawa K, Naito H. Tetsu–to–Hagan´e, 1969; 55: 355
(岗田秀弥, 细井佑三, 汤川惠一,内藤浩光. 铁と钢, 1969; 55: 355)
[19] Misawa T, Yamashita M, Matsuda Y, Miyuki H, Nagano H. Tetsu–to–Hagan´e, 1993; 79: 69
(三尺俊平, 山下正人,松田恭司, 幸英昭, 长野博夫. 铁と钢, 1993; 79: 69)
[20] Yamashita M, Miyuki H, Matsuda Y, Nagano H, Misawa T. Corros Sci, 1994; 36: 283

[1] 刘伟, 陈婉琦, 马梦晗, 李恺伦. 聚变堆用W在等离子体作用下的辐照损伤行为研究进展[J]. 金属学报, 2023, 59(8): 986-1000.
[2] 朱小绘, 刘向兵, 王润中, 李远飞, 刘文庆. 290℃氩离子辐照对Fe-Cu合金微观组织的影响[J]. 金属学报, 2022, 58(7): 905-910.
[3] 刘雨薇, 顾天真, 王振尧, 汪川, 曹公望. Q235Q450NQR1在中国南沙海洋大气环境中暴晒34个月后的腐蚀行为[J]. 金属学报, 2022, 58(12): 1623-1632.
[4] 刘悦, 汤鹏正, 杨昆明, 沈一鸣, 吴中光, 范同祥. 抗辐照损伤金属基纳米结构材料界面设计及其响应行为的研究进展[J]. 金属学报, 2021, 57(2): 150-170.
[5] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[6] 张哲峰,邵琛玮,王斌,杨浩坤,董福元,刘睿,张振军,张鹏. 孪生诱发塑性钢拉伸与疲劳性能及变形机制[J]. 金属学报, 2020, 56(4): 476-486.
[7] 吴玉程. 核聚变堆用W及其合金辐照损伤行为研究进展[J]. 金属学报, 2019, 55(8): 939-950.
[8] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[9] 张哲峰, 刘睿, 张振军, 田艳中, 张鹏. 金属材料疲劳性能预测统一模型探索[J]. 金属学报, 2018, 54(11): 1693-1704.
[10] 孙军, 张金钰, 吴凯, 刘刚. Cu系纳米金属多层膜微柱体的形变与损伤及其尺寸效应*[J]. 金属学报, 2016, 52(10): 1249-1258.
[11] 卢云飞,董俊华,柯伟. SO42-对NiCu低合金钢在除氧NaHCO3溶液中腐蚀行为的影响[J]. 金属学报, 2015, 51(9): 1067-1076.
[12] 卢云飞, 阳靖峰, 董俊华, 柯伟. NiCu低合金钢在含Cl-的除氧NaHCO3溶液中的腐蚀行为研究[J]. 金属学报, 2015, 51(4): 440-448.
[13] 陈文娟, 郝龙, 董俊华, 柯伟, 文怀梁. 模拟工业-海岸大气中pH值对Q235B钢腐蚀行为的影响*[J]. 金属学报, 2015, 51(2): 191-200.
[14] 陈文娟, 郝龙, 董俊华, 柯伟, 文怀梁. 模拟工业-海岸大气中SO2对Q235B钢腐蚀行为的影响*[J]. 金属学报, 2014, 50(7): 802-810.
[15] 李正操, 陈良. 核能系统压力容器辐照脆化机制及其影响因素[J]. 金属学报, 2014, 50(11): 1285-1293.