Please wait a minute...
金属学报  2009, Vol. 45 Issue (2): 243-248    
  论文 本期目录 | 过刊浏览 |
稀土Gd掺杂对锆基块体非晶合金玻璃形成能力及力学性能的影响
孙亚娟;  魏先顺;  黄永江;  沈军
(哈尔滨工业大学材料科学与工程学院; 哈尔滨 150001)
EFFECT OF Gd ADDITION ON THE GLASS FORMING ABILITY AND MECHANICAL PROPERTIES IN A Zr–BASED BULK AMORPHOUS ALLOY
SUN Yajuan; WEI Xianshun; HUANG Yongjiang; SHEN Jun
School of Materials Science and Engineering; Harbin Institute of Technology; Harbin 150001
引用本文:

孙亚娟 魏先顺 黄永江 沈 军. 稀土Gd掺杂对锆基块体非晶合金玻璃形成能力及力学性能的影响[J]. 金属学报, 2009, 45(2): 243-248.
. EFFECT OF Gd ADDITION ON THE GLASS FORMING ABILITY AND MECHANICAL PROPERTIES IN A Zr–BASED BULK AMORPHOUS ALLOY[J]. Acta Metall Sin, 2009, 45(2): 243-248.

全文: PDF(6910 KB)  
摘要: 

适量的Gd掺杂可提高Zr50.7Cu28Ni9Al12.3块体非晶合金的玻璃形成能力, 当Gd元素掺杂量 (原子分数) 为1%时, 即(Zr50.7Cu28Ni9Al12.3)99Gd1, 柱状非晶合金直径可达16 mm (不掺杂时为14 mm). 稀土Gd掺杂降低了锆基块体非晶合金的断裂强度与塑性 变形能力. 随着Gd含量的增加, 其断裂方式由单一的剪切断裂转变为剪切断裂与破碎断裂的复合形式, 且含Gd元素掺杂的非晶合金断口呈现了脉状纹络与纳米周期性条纹共存的特征.

关键词 锆基块体非晶合金 玻璃形成能力 力学性能    
Abstract

The glass forming ability (GFA) of a newly developed Zr50.7Cu28Ni9Al12.3 alloy can be improved by minor addition of Gd element, for example, the amorphous alloy Zr50.7Cu28Ni9Al12.3 has a critical diameter of 14 mm, but the alloy added by 1%Gd (atomic fraction), (Zr50.7Cu28Ni9Al12.3)99Gd1,
has 16 mm critical diameter. However, the Gd addition decreases the fracture strength and plastic strain under compressive condition. Meanwhile, with Gd addition increasing, the fracture mode transforms from pure shear to shear with hysterical failure. A combination of vein pattern and nanoscale corrugations can be clearly observed on the fracture surfaces of the alloys with Gd addition.

Key wordsZr--based bulk amorphous alloy    glass forming ability    mechanical property
收稿日期: 2008-07-14     
ZTFLH: 

TG113.25

 
基金资助:

国家自然科学基金资助项目50771040

作者简介: 孙亚娟, 女, 1978年生, 博士生

[1] Johnson W L. MRS Bull, 1999; 24: 42
[2] Wang W H, Dong C, Shek C H. Mater Sci Eng, 2004; R44: 45
[3] Telford M. Mater Today, 2004; 7: 36
[4] Ashby M F, Greer A L. Scr Mater, 2006; 54: 321
[5] Peker A, Johnson W L. Appl Phys Lett, 1993; 63: 2342
[6] Inoue A, Zhang T, Nishiyama N, Ohba K, Masumoto T. Mater Trans JIM, 1993; 34: 1234
[7] Inoue A, Zhang T. Mater Trans JIM, 1996; 37: 185
[8] Xing L Q, Ochin P, HarmelinM, Faudot F, Bigot J, Chevalier J P. Mater Sci Eng, 1996; A220: 155
[9] Jiang Q K, Wang X D, Nie X P, Zhang G Q, Ma H, Fecht H J, Bendnarcik J, Franz H, Liu Y G, Cao Q P, Jiang J Z. Acta Mater, 2008; 56: 1785
[10] Gebert A, Eckert J, Sculzt L. Acta Mater, 1998; 46: 5475
[11] Wang W H, Bian Z, Wen P, Zhang Y, Pana M X, Zhao D Q. Intermetallics, 2002; 10: 1249
[12] Yan M, Zou J, Shen J. Acta Mater, 2006; 54: 3627
[13] Iqbal M, Hu Z Q, Zhang H F, Sun W S, Akhter J I. J Non–Cryst Solids, 2006; 352: 3290
[14] Iqbal M, Akhter J I, Zhang H F, Hu Z Q. J Non–Cryst Solids, 2008; 354: 3291
[15] Wang W H. Prog Mater Sci, 2007; 52: 540
[16] Turnbull D. Contemp Phys, 1969; 10: 473
[17] Lu Z P, Liu C T. Phys Rev Lett, 2003; 91: 115505
[18] Fu H M, ang H, Zhang H F, Hu Z Q. Scr Mater, 2006; 55: 147
[19] Sun Y Y, Liu B, Chen Q, Liu L. Acta Metall Sin, 2007; 43: 177
(孙阳阳, 刘 兵, 谌祺, 柳林. 金属学报, 2007; 43: 177)
[20] Ma L Q, Wang L M, Zhang T, Inoue A. Acta Metall Sin, 1999; 35: 631
(马立群, 王立民, 张涛, 井上明久. 金属学报, 1999; 35: 631)
[21] Li R, Pang S J, Ma C L, Zhang T. Acta Mater, 2007; 55: 3719
[22] Poon S J, Shiflet G J, Guo F Q, Ponnambalam V. J Non–Cryst Solids, 2003; 317: 1
[23] Kanibolotsky D S, Lisnyak V V. J Non–Cryst Solids, 2004; 333: 194
[24] Battezzati L, Garrone E. Z Metallkd, 1984; 75: 305
[25] Guo F Q, Poon S J, Shiflet G J. Appl Phys Lett, 2003; 83: 2575
[26] Yang B, Liu C T, Nieh T G. Appl Phys Lett, 2006; 88: 221911
[27] Shen J, Liang W Z, Sun J F. Appl Phys Lett, 2006; 89: 121908
[28] Xi X K, Zhao D Q, Pan M X, Wang W H, Wu Y, Lewandowski J J. Phys Rev Lett, 2005; 94: 125510
[29] Pan D G, Zhang H F, Wang A M, Wang Z G, Hu Z Q. J Alloy Compd, 2007; 438: 145
[30] Wang G, Wang Y T, Liu Y H, Pan M X, Zhao D Q, Wang W H. Appl Phys Lett, 2006; 89: 121909
[31] Zhang Z F, Wu F F, Gao W, Tan J, Wang Z G, Stoica M, Das J, Eckert J, Shen B L, Inoue A. Appl Phys Lett, 2006; 89: 251917
[32] Wang G, Zhao D Q, Bai H Y, Pan M X, Xia A L, Han B S, Xi X K, Wu Y, Wang W H. Phys Rev Lett, 2007; 98: 235501
[33] Zhang Z F, Zhang H, Shen B L, Inoue A, Eckert J. Philos Mag Lett, 2006; 86: 643
[34] Zhang Z F, Wu F F, Fan J T, Zhang H. Sci China, 2008; 38G: 349
(张哲峰, 伍复发, 范吉堂, 张辉.中国科学, 2008; 38G: 349)
[35] Zhang Z F, Wu F F, He G, Eckert J. J Mater Sci Technol, 2007; 23: 747
[36] Donovan P E, Stobbs W M. Acta Metall, 1981; 29: 1419
[37] Spaepen F. Acta Metall, 1977; 25: 407
[38] Argon A S. Acta Metall, 1979; 27: 47
[39] Liu L F, Dai L H, Bai Y L, Wei B C. J Non–Cryst Solids, 2005; 351: 3259
[40] Wright W J, Hufnagel T C, Nix W D. J Appl Phys, 2003; 93: 1432
[41] Meng J X, Ling Z, Jiang M Q, Zhang H S, Dai L H. Appl Phys Lett, 2008; 92: 171909

[1] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] 丁桦, 张宇, 蔡明晖, 唐正友. 奥氏体基Fe-Mn-Al-C轻质钢的研究进展[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] 袁江淮, 王振玉, 马冠水, 周广学, 程晓英, 汪爱英. Cr2AlC涂层相结构演变对力学性能的影响[J]. 金属学报, 2023, 59(7): 961-968.
[9] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[10] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[11] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[12] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[13] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[14] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[15] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.