Please wait a minute...
金属学报  2009, Vol. 45 Issue (10): 1199-1204    
  论文 本期目录 | 过刊浏览 |
单晶Cu纳米加工机理及其热效应的分子动力学模拟
郭永博;梁迎春;陈明君;卢礼华
哈尔滨工业大学精密工程研究所; 哈尔滨 150001
MOLECULAR DYNAMICS SIMULATIONS OF NANOMACHINING MECHANISM AND THERMAL EFFECTS OF SINGLE CRYSTAL Cu
GUO Yongbo; LIANG Yingchun; CHEN Mingjun; LU Lihua
Precision Engineering Research Institute; Harbin Institute of Technology; Harbin 150001
引用本文:

郭永博 梁迎春 陈明君 卢礼华. 单晶Cu纳米加工机理及其热效应的分子动力学模拟[J]. 金属学报, 2009, 45(10): 1199-1204.
, , , . MOLECULAR DYNAMICS SIMULATIONS OF NANOMACHINING MECHANISM AND THERMAL EFFECTS OF SINGLE CRYSTAL Cu[J]. Acta Metall Sin, 2009, 45(10): 1199-1204.

全文: PDF(3275 KB)  
摘要: 

基于大规模并行算法建立了单晶Cu纳米加工新型三维分子动力学仿真模型, 采用Tersoff势、嵌入原子势 (embedded atom method, EAM) 和Morse势分别描述刀具原子之间、工件原子之间和工件与刀具原子之间的相互作用. 研究了纳米加工过程中系统的温度分布及 其热效应的影响, 从位错和温度的角度对切屑形成过程和纳米加工表面的形成机理进行了分析. 模拟结果表明: 位错的扩展方向和切屑的堆积方向均沿着与切削方向成45°方向<110>晶向)运动; 系统的温度分布呈同心形, 切屑处温度最高, 同时在金刚石刀具中存在较大的温度梯度; 随着系统温度升高, 工件材料具有热软化效应; 切削速度和切削刃钝圆半径对系统的温度分布影响很大.

关键词 单晶Cu 纳米加工 分子动力学 温度分布 热软化效应 位错    
Abstract

In recent years, nanomachining has received an increasing attention because of the remarkable advancement in sciences and technologies. In nanomachining process, the atomic interaction in surface and subsurface layers plays an important role. At such a small nanoscale, the traditional continuum representation method, such as finite element method, becomes questionable. This difficulty can be solved in general by molecular dynamics (MD). MD provides the necessary insight into nanomachining process and allows researching local material properties and behaviors in detail. Based on the large scale parallel algorithm, a new three–dimensional molecular dynamics simulation model was established for nanomachining of single crystal Cu. The interactions between workpiece atoms (Cu—Cu), copper and diamond atoms (Cu—C), and diamond atoms (C—C) were described by embedded atom method (EAM), Morse and Tersoff potentials, respectively. The temperature distribution and thermal effects during nanomachining were investigated. The chip formation and nanomachining mechanism were analyzed from the point of view of dislocation theory and thermal effects. The simulation results demonstrate that both the dislocation emission and chip pilep direction are along the h110i orientation. Temperature ditribution presents a roughly concentric shape and a steep temperature gradient lies in diamond tool, and the highest temperature is found in chip. The workpiece material becomes soft as the system temperature increases. Cutting speed and cutting edge radius have a significant effect on the system temperature distribution.

Key wordssingle crystal Cu    nanomachining    molecular dynamics    temperature distribution    thermal soft effect    dislocation
收稿日期: 2009-04-07     
ZTFLH: 

TG146.1

 
基金资助:

国家自然科学基金项目50675050, 黑龙江省杰出青年科学基金项目JC200614及教育部新世纪人才计划项目06--0332资助

作者简介: 郭永博, 男, 1981年生, 博士生

[1] Liang H Y, Ni X G, Wang X X. Acta Metall Sin, 2001; 37: 833
(梁海弋, 倪向贵, 王秀喜. 金属学报, 2001; 37: 833)
[2] Wu H A, Wang X X, Liang H Y, Liu G Y. Acta Metall Sin, 2002; 38: 903
(吴恒安, 王秀喜, 梁海弋, 刘光勇. 金属学报, 2002; 38: 903)
[3] Inamura T, Takezawa N. CIRP Ann, 1992; 41: 121
[4] Fang T H, Weng C I. Nanotechnology, 2000; 11: 148
[5] Kim J D, Moon C H. J Mater Process Technol, 1996; 59: 309
[6] Liang Y C, Guo Y B, Chen M J. Tribology, 2008; 3: 282
(梁迎春, 郭永博, 陈明君. 摩擦学学报, 2008; 3: 282)
[7] Cheng K, Luo X, Ward R. Wear, 2003; 255: 1427
[8] Lin B, Wu H, Yu S Y, Xu Y S. Nanotech Precis Eng, 2004;2: 136
(林滨, 吴辉, 于思远, 徐燕申. 纳米技术与精密工程, 2004; 2: 136)
[9] Guo X G, Guo D M, Kang R K, Jin Z J. J Dalian Univ Technol, 2008; 48: 205
(郭晓光, 郭东明, 康仁科, 金洙吉. 大连理工大学学报, 2008; 48: 205)
[10] Ikawa N, Shimada S, Tanaka H. CIRP Ann, 1991; 40: 551
[11] Shimada S, Ikawa N, Tanaka H, Uchikoshi J. CIRP Ann, 1994; 43: 51
[12] Komanduri R, Chandrasekaran N, Raff L M. Wear, 2000; 242: 60
[13] Pei Q X, Lu C, Fang F Z, Wu H. Comput Mater Sci, 2006; 37: 434
[14] Maekawa K, Itoh A. Wear, 1995; 188: 115
[15] Cheong W C D, Zhang L C. Nanotechnology, 2000; 11: 173
[16] Tersoff J. Phys Rev, 1989; 39B: 5566
[17] Daw M S, Baskes M I. Phys Rev, 1984; 29B: 6443
[18] Ye Y, Biswas R, Morris J R, Bastawros A, Chandra A. Nanotechnology, 2003; 14: 390
[19] Fuente O R, Zimmerman J A, Gonz´alez M A, Figuera J, Hamilton J C, Pai W, Rojo J M. Phys Rev Lett, 2002; 88: 036101

[1] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[2] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[4] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[5] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[6] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[7] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[8] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[9] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[10] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[11] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[12] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[13] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[14] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[15] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.