Please wait a minute...
金属学报  2009, Vol. 45 Issue (10): 1190-1198    
  论文 本期目录 | 过刊浏览 |
相场方法研究硬质颗粒钉扎的两相晶粒长大过程
高英俊1; 2; 张海林1; 金星1;黄创高1; 罗志荣1
1. 广西大学物理科学与工程技术学院; 南宁 530004
2. 中国科学院国际材料物理中心; 沈阳 110016
PHASE-FIELD SIMULATION OF TWO-PHASE GRAIN GROWTH WITH HARD PARTICLES
GAO Yingjun 1;2; ZHANG Hailin 1; JIN Xing 1; HUANG Chuanggao 1; LUO Zhirong1
1. School of Physics Science and Engineering; Guangxi University; Nanning 530004
2. International Centre for Materials Physics; Chinese Academy of Science; Shenyang 110016
引用本文:

高英俊 张海林 金星 黄创高 罗志荣. 相场方法研究硬质颗粒钉扎的两相晶粒长大过程[J]. 金属学报, 2009, 45(10): 1190-1198.
. PHASE-FIELD SIMULATION OF TWO-PHASE GRAIN GROWTH WITH HARD PARTICLES[J]. Acta Metall Sin, 2009, 45(10): 1190-1198.

全文: PDF(3474 KB)  
摘要: 

采用相场方法模拟第三相颗粒钉扎的两相耦合的晶粒长大过程, 系统地研究了第三相颗粒体积分数和尺寸大小对两相晶粒长大 过程的影响. 模拟结果表明, 第三相颗粒体积分数越大, 对晶界的钉扎作用越强, 且极限晶粒尺寸越小. 单个第三相颗粒尺寸越大, 对晶界钉扎作用越强. 但当体积分数一定时第三相颗粒尺寸越小时, 颗粒数目会越多, 此时总的钉扎效果会越好, 晶粒极限尺寸也越小. 若晶粒长大系统同时引入两种不同大小的第三相钉扎颗粒, 且两种颗粒所占比例相同时, 钉扎效果最好. 相场方法模拟所得到的二相多晶材料晶粒组织演化规律和晶粒生长指数、晶粒形态、生长动力学和拓扑结构特征与已有实验和理论结果相符合

关键词 相场模拟 晶粒长大 硬质颗粒 Zener钉扎    
Abstract

Grain growth, due to its importance in controlling the physical properties of a wide variety of materials, has been extensively investigated. Second–phase particles have the capacity to "pin" grain boundaries and therefore affect the grain growth behavior of polycrystalline materials profoundly. They reduce the mobility of grain boundaries and eventually, when a critical grain size is reached, arrest grain growth. Based on a diffuse–interface description, a computer simulation model for studying the microstructural evolution in two–phase solid has been developed. For a grain system with hard particles, the kinetics of two–phase grain growth with the third hard particles was investigated by phase field model with a continuum diffuse–interface field. A polycrystalline microstructure of temporal and spatial evolution of the three–phase–solid system was obtained by solving three kinetics equations. It is found that the pinning effect is enhanced with the increase of the size and the volume fraction of third–phase particles. The greater the volume fraction and size of third–phase particles are, the smaller the limited sizes of grain growth are. If the volume fraction of third–phase particle maintains a constant and the size of third–phase particles is smaller, then the pinning effect of third–phase particles is stronger. When third particles with two different sizes under the same volume fraction are introduced in the system of grain growth, the pinning effect of the particles is the best. The power growth law, grain morphology, critical grain size, grain growth dynamics and topology structure of two–phase polycrystalline materials simuated by phase–fielmodel are in well accordnce with the experimental results and theoretical results of other simulations.

Key wordsphase-field simulation    grain growth    hard particle    Zener pinning
收稿日期: 2009-04-07     
ZTFLH: 

TB115

 
基金资助:

国家自然科学基金项目50661001和50061001, 以及广西自然科学基金项目0991026, 0832029和0639004资助

作者简介: 高英俊, 男, 1962年生, 教授, 博士

[1] Voorhees W. Annu Rev Mater Sci, 1992; 22: 197
[2] French J D, Harmer M P. J Am Ceram Soc, 1990; 73: 2508
[3] Aikinson H V. Acta Metall, 1988; 36: 469
[4] Lang E F, Hirlinger M M. J Am Ceram Soc, 1987; 70: 827
[5] Song X Y, Markus K, Zhang J X. Acta Metall Sin, 2004;40: 1009
(宋晓艳, Markus K, 张久兴. 金属学报, 2004; 40: 1009)
[6] MaoWM, Zhao X B. Recrystallization and Grain Growth. Beijing: Metallurgical Industry Press, 1994: 25
(毛卫民, 赵新兵. 金属的再结晶与晶粒长大. 北京: 冶金工业出版社, 1994: 25)
[7] Krzanowshi J E, Allen S M. Acta Metall, 1983; 31: 213
[8] Cahn J W. Acta Metall, 1962; 10: 789
[9] Krzanowshi J E, Allen S M. Acta Metall, 1986; 34: 1045
[10] Allen S M, Cahn J W. Acta Metall, 1979; 27: 1085
[11] Kad B K, Hazzledine P M. Mater Sci Eng, 1997; A238: 70
[12] Radhakrishnan B, Zacharia T. Mater Sci Eng, 2002; A310: 227
[13] Anderson M P, Grest G S, Scolority D J. Scr Metall, 1989; 23: 753
[14] Qiang Y, Esche S K. Comput Mater Sci, 2003; 27: 259
[15] Xiao N, Zhang C, Li D, Li Y. Comput Mater Sci, 2008; 41: 366
[16] Oono Y, Pori S. Phys Rev Lett, 1987; 58: 836
[17] Chen L Q, Fan D N. J Am Ceram Soc, 1997; 79: 1163
[18] Chen L Q, Yang W. Phys Rev, 1994; 50B: 15752
[19] Cahn J W, Hilliard J E. J Chem Phys, 1958; 28: 258
[20] Takaki T, Hirouchi T, Hisakuni Y, Yamanaka A, Tomita Y. Mater Trans, 2008; 49: 2559
[21] Vaithyanathan V, Wolverton C, Chen L Q. Phys Rev Lett, 2002; 88: 125503
[22] Li Y L, Chen L Q. Appl Phys Lett, 2006; 88: 072905
[23] Takaki T, Hirouchi T, Hisakuni Y, Yamanaka A, Tomita Y. J Cryst Growth, 2008; 310: 2248
[24] Wang Y U. Acta Mater, 2006; 54: 953
[25] Li W, Gao L. Scr Mater, 2001; 44: 2269
[26] Guyer J E, Boittinger W J. Phys Rev, 2004; 69E: 021603
[27] Fan D N, Chen L Q. J Am Ceram Soc, 1997; 80: 1773
[28] Moelans N, Blanpain B, Wollants P. Acta Mater, 2006; 54: 1175
[29] Moelans N, Blanpain B,Wollants P. CALPHAD, 2008; 32: 268
[30] Moelans N, Blanpain B, Wollants P. Acta Mater, 2007; 55: 2173
[31] Suwa Y, Saito Y, Onodera H. Scr Mater, 2006; 55: 404
[32] Suwa Y, Saito Y, Onodera H. Acta Mater, 2007; 55: 6881
[33] Krill C E, Chen L Q. Acta Mater, 2002; 50: 3059
[34] Fan D N, Chen L Q. Acta Mater, 1997; 45: 3297
[35] Krzanowski J E, Allen S M. Acta Metall, 1983; 31: 213
[36] Fan D N, Chen L Q. Acta Mater, 1997; 45: 611
[37] Schehl M, Diaz L A, Acta Metall, 2002; 50: 1125
[38] Zener C S. Trans Met Soc AIME, 1948; 175: 15
[39] Longworth H P, Thompson C V. J Appl Phys, 1991; 69: 3929
[40] Long Y Q, Liu P, Liu Y, Zhang W M, Pan J S. Mater Lett, 2008; 62: 3039

[1] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[3] 戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪. UN核燃料烧结致密化过程的相场模拟[J]. 金属学报, 2023, 59(11): 1513-1522.
[4] 李赛, 杨泽南, 张弛, 杨志刚. 珠光体-奥氏体相变中扩散通道的相场法研究[J]. 金属学报, 2023, 59(10): 1376-1388.
[5] 高建宝, 李志诚, 刘佳, 张金良, 宋波, 张利军. 计算辅助高性能增材制造铝合金开发的研究现状与展望[J]. 金属学报, 2023, 59(1): 87-105.
[6] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[7] 孙正阳, 王昱天, 柳文波. 气孔与晶界相互作用的相场模拟[J]. 金属学报, 2020, 56(12): 1643-1653.
[8] 刘峰, 黄林科, 陈豫增. 纳米晶金属材料中相变与晶粒长大的共生现象[J]. 金属学报, 2018, 54(11): 1525-1536.
[9] 惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
[10] 宋鹏程,柳文波,陈磊,张弛,杨志刚. 形状记忆合金Au30Cu25Zn45中热弹性马氏体相变的相场模拟*[J]. 金属学报, 2016, 52(8): 1000-1008.
[11] 张金虎,徐东生,王云志,杨锐. 位错对Ti-6Al-4V合金α相形核及微织构形成的影响*[J]. 金属学报, 2016, 52(8): 905-915.
[12] 荆涛, 帅三三, 汪明月, 郑启威. 镁合金凝固过程三维枝晶形貌和生长取向研究进展:三维实验表征和相场模拟*[J]. 金属学报, 2016, 52(10): 1279-1296.
[13] 柯常波, 周敏波, 张新平. Sn/Cu互连体系界面金属间化合物Cu6Sn5演化和生长动力学的相场法模拟*[J]. 金属学报, 2014, 50(3): 294-304.
[14] 周德强, 刘雄军, 吴渊, 王辉, 吕昭平. 新型奥氏体耐热不锈钢再结晶行为及其对力学性能的影响[J]. 金属学报, 2014, 50(10): 1217-1223.
[15] 张转转 武传松 高进强 . TCS不锈钢复合热源焊接热影响区晶粒长大的预测[J]. 金属学报, 2012, 48(2): 199-204.