Please wait a minute...
金属学报  2009, Vol. 45 Issue (10): 1205-1210    
  论文 本期目录 | 过刊浏览 |
单晶Cu材料纳米切削特性的分子动力学模拟
梁迎春;盆洪民;白清顺
哈尔滨工业大学机电工程学院; 哈尔滨 150001
MOLECULAR DYNAMICS SIMULATION OF NANOMETRIC CUTTING CHARACTERISTICS OF SINGLE CRYSTAL Cu
LIANG Yingchun; PEN Hongmin; BAI Qingshun
School of Mechatronics Engineering; Harbin Institute of Technology; Harbin 150001
引用本文:

梁迎春 盆洪民 白清顺. 单晶Cu材料纳米切削特性的分子动力学模拟[J]. 金属学报, 2009, 45(10): 1205-1210.
, , . MOLECULAR DYNAMICS SIMULATION OF NANOMETRIC CUTTING CHARACTERISTICS OF SINGLE CRYSTAL Cu[J]. Acta Metall Sin, 2009, 45(10): 1205-1210.

全文: PDF(6160 KB)  
摘要: 

建立了单晶Cu纳米切削的三维分子动力学模型, 研究了不同切削厚度下纳米切削过程中工件缺陷结构和应力分布的规律. 纳米切 削过程中, 在刀具的前方和下方形成变形区并伴随缺陷的产生, 缺陷以堆垛层错和部分位错为主. 在纳米尺度下, 工件存在很大的表面应力, 随着切削的进行, 工件变形区主要受压应力作用, 已加工表面主要受拉应力作用. 随着位错在晶体中产生、繁殖及相互作用, 工件先后 经过弹性变形---塑性变形---加工硬化---完全屈服4个变形阶段, 随后进入新的循环变形. 结果表明: 工件应力--位移曲线呈周期性变化; 切削厚度较小时, 工件内部没有明显的层错产生, 随着切削厚度的增大, 工件表面和亚表层缺陷增加; 切削厚度越大, 对应应力分量值越小.

关键词 单晶Cu 分子动力学 位错 应力分布 切削厚度    
Abstract

The increasing demand for designing and manufacturing micro parts with high quality comes from the high speed development of micro electromechanical systems (MEMS) and nano electromechanical systems (NEMS) in recent years. Nanometric cutting as an important machining way of micro parts has become a hot spot in machining field. Some main issues in nanometric cutting such as chip formation, machined surface quantity and diamond tool wear etc., have been investigated by molecular dynamics. Previous researchers have pointed out that the generation and evolution of defects are mainly responsible for causing plastic deformation of machined workpiece in nanometric cutting of plastic materials and a high compressive stress remaining in shear zone is considered beneficial to ductile–mode machining of brittle materials. Up to now, however, the influence of cutting thickness on defect behaviors and stress distribution in a workpiece and the relationship between them for single crystal materials are still unclear. In the present study, molecular dynamics simulations of nanometric cutting of single crystal Cu were performed. The simulation results show that stacking fault and partial dislocation are two main types of the defects in workpieces. A high surface stress at the atomc scale was observed in workpieces and there exist the compressive stress in shear zones and tensile stresses in the machined surfaces. It is found that the stress–distance curves of workpieces present a clear periodicity corresponding to the generation and evolution of dislocations in them. At he beginning of cutting (a small cutting thickness), no apparent stacking faults inside workpieces have been found, but with the increase of cutting thickness, the defects on surfaces and subsurfaces increase significantly and the thicker the cutting thickness, the smaller the corresponding stress components.

Key wordssingle crystal Cu    molecular dynamics    dislocation    stress distribution    cutting thickness
收稿日期: 2009-03-10     
ZTFLH: 

TG501.1

 
基金资助:

国家自然科学基金项目50705023和黑龙江省杰出青年科学基金项目JC200614资助

作者简介: 梁迎春, 男, 1964年生, 教授, 博士

[1] Ikawa N, Shimada S, Tanaka H, Ohmori G. CIRP Ann, 1991; 4: 551
[2] Komanduri R, Chandrasekaran N, Raff L M. Wear, 2000; 242: 60
[3] Lin B, Han X S, Yu S Y, Lin B, Chen X R. J Tianjin Univ (Sci Technol), 2000; 33: 652
(林 \ \ 滨, 韩雪松, 于思远, 林彬, 陈锡让. 天津大学学报, 2000; 33: 652)
[4] Guo X G, Guo D M, Kang R K, Jin Z J. Chin J Mech Eng, 2006; 42(6): 46
(郭晓光, 郭东明, 康仁科, 金诛吉. 机械工程学报, 2006; 42(6): 46)
[5] Liang Y C, Chen J X, Bai Q S, Tang Y L, Chen M J. Acta Metall Sin, 2008; 44: 937
(梁迎春, 陈家轩, 白清顺, 唐玉兰, 陈明君. 金属学报, 2008; 44: 937)
[6] Jun S, Lee Y, Kim S Y, Im S. Nanotechnology, 2004; 15: 1169
[7] Tanaka H, Shimada S, Anthony L. CIRP Ann, 2007; 56: 53
[8] Pei Q X, Lu C, Lee H P. Comput Mater Sci, 2007; 41: 177
[9] Cai M B, Li X P, Rahman M, Tay A A O. Int J Mach Tools Manuf, 2007; 47: 526
[10] Daw M S, Baskes M I. Phys Rev, 1984; 29B: 6443
[11] Tersoff J. Phys Rev, 1989; 39B: 5566
[12] Girifalco L A, Weizer V G. Phys Rev, 1959; 114: 687
[13] Diao J K, Gall K, Dunn M L, Zimmerman J A. Acta Mater, 2006; 54: 643
[14] Kelchner C L, Plimpton S J, Hamilton J C. Phys Rev, 1998; 58B: 11085
[15] Liang H Y, Ni X G, Wang X X. Acta Metall Sin, 2001; 37: 833
(梁海弋, 倪向贵, 王秀喜. 金属学报, 2001; 37: 833)
[16] Roundy D, Krenn C R, Cohen M L, Jr Morris J W. Phys Rev Lett, 1999; 82: 2713
[17] Tang Q H. Mater Sci Semicond Process, 2007; 10: 270

[1] 韩卫忠, 卢岩, 张雨衡. 体心立方金属韧脆转变机制研究进展[J]. 金属学报, 2023, 59(3): 335-348.
[2] 韩冬, 张炎杰, 李小武. 短程有序对高层错能Cu-Mn合金拉-拉疲劳变形行为及损伤机制的影响[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] 田妮, 石旭, 刘威, 刘春城, 赵刚, 左良. 预拉伸变形对欠时效7N01铝合金板材疲劳断裂的影响[J]. 金属学报, 2022, 58(6): 760-770.
[4] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[5] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.
[6] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[7] 武晓雷, 朱运田. 异构金属材料及其塑性变形与应变硬化[J]. 金属学报, 2022, 58(11): 1349-1359.
[8] 安旭东, 朱特, 王茜茜, 宋亚敏, 刘进洋, 张鹏, 张钊宽, 万明攀, 曹兴忠. 奥氏体316不锈钢中位错与氢的相互作用机理[J]. 金属学报, 2021, 57(7): 913-920.
[9] 兰亮云, 孔祥伟, 邱春林, 杜林秀. 基于多尺度力学实验的氢脆现象的最新研究进展[J]. 金属学报, 2021, 57(7): 845-859.
[10] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[11] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[12] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[13] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[14] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[15] 李亦庄,黄明欣. 基于中子衍射和同步辐射X射线衍射的TWIP钢位错密度计算方法[J]. 金属学报, 2020, 56(4): 487-493.