Please wait a minute...
金属学报  2008, Vol. 44 Issue (10): 1219-1223     
  论文 本期目录 | 过刊浏览 |
强磁场下Fe-49%Sn偏晶合金凝固组织及磁性能
左小伟;王恩刚;韩欢;张林;赫冀成
东北大学 材料电磁过程研究教育部重点实验室
MICROSTRUCTURE AND MAGNETIC PROPERTIES OF Fe-49%Sn HYPERMONOTECTIC ALLOYS IMPOSED BY A HIGH MAGNETIC FIELD
ZUO Xiao-Wei;Wang Engang Wang;Huan HAN;Lin Zhang;Jicheng He
东北大学 材料电磁过程研究教育部重点实验室
引用本文:

左小伟; 王恩刚; 韩欢; 张林; 赫冀成 . 强磁场下Fe-49%Sn偏晶合金凝固组织及磁性能[J]. 金属学报, 2008, 44(10): 1219-1223 .
, , , , . MICROSTRUCTURE AND MAGNETIC PROPERTIES OF Fe-49%Sn HYPERMONOTECTIC ALLOYS IMPOSED BY A HIGH MAGNETIC FIELD[J]. Acta Metall Sin, 2008, 44(10): 1219-1223 .

全文: PDF(2349 KB)  
摘要: 研究了强磁场对Fe-49%Sn(质量分数)偏晶合金凝固组织演变及磁性能的影响. 结果表明: 施加强磁场可以显著改变富Fe相枝晶形貌, 进而改善材料的磁性能.在无磁场作用下富Fe相为无方向性的枝晶及网状组织形貌; 随磁感应强度增加, 富Fe相沿平行磁场方向定向排列程度增加, α-Fe的(110)晶面衍射强度增强. 分析认为, 这是由于强磁场诱使晶体磁各向异性能增加, 使得α-Fe枝晶择优取向作用增强. 根据样品磁滞回线计算的磁各向异性能结果与理论分析一致. 另外, XRD分析表明, 有、无强磁场作用下凝固样品的物相均不变, 都由α-Fe, β-Sn,FeSn及FeSn2组成.
关键词 强磁场Fe-49%Sn偏晶合金富Fe相形貌    
Abstract:The effect of a high magnetic field (HMF) on solidification microstructure and magnetic properties of Fe-49%Sn hypermonotectic alloys have been studied. It was showed that the morphologies of Fe-rich dendrites could be changed obviously and then magnetic properties were induced to improve. The morphologies of Fe-rich without HMF were dendrites in random and partially cellular structures. The alignment and preferential growth of Fe-rich dendrites paralleled to the applied field occurred with 10T. The primary dendrite arms of Fe-rich phase could be induced to align along [001] direction. The secondary dendrites were broken to fragments and even disappeared. Microstructure evolution and theoretical analysis were proposed to explain these results, which were in terms of magnetic crystalline anisotropy and preferential growth of dendrites. The aligned structures caused the increased magnetic properties such as the maximum magnetic permeability, remanent magnetization and magnetic crystalline anisotropy energy.
Key wordsHigh magnetic field    Fe-49%Sn    monotectic alloy    morphology of Fe-rich phase    magnetic property
收稿日期: 2008-03-29     
ZTFLH:  TG132.2  
[1]Predel B,Ratke L,Fredriksson H.In:Walter H U ed.,A European Perspective:Fluid Sciences and Materials Sci- ence in Space.Berlin:Springer-Verlag,1987:517
[2]Zhang X H,Ruan Y,Wang W L,Wei B B.Sci China, 2007;50G:491
[3]Liu X R,Lu X Y,Wei B B.Sci China,2004;47E:409
[4]He J,Zhao J Z,Wang X F,Zhang Q X,Li H L,Chen G Y.Acta Metall Sin,2007;43:567 (何杰,赵九洲,王晓峰.张钦霞,李海丽,陈桂云.金属学报,2007;43:567)
[5]Liu X R,Wang N,Wei B B.Acta Phys Sin,2005;54:1671 (刘向荣,王楠,魏炳波.物理学报,2005;54:1671)
[6]Xu J F,Wei B B.Acta Phys Sin,2004;53:1909 (徐锦锋,魏炳波.物理学报,2004;53:1909)
[7]Yasuda H,Ohnaka I,Dhindaw B K,Takezawa N, Tamayama T,Fujimoto S,Tsuchiyama A,Nakano T,Ue- sugi K.Trans Indian Inst Metals,2005;58:625
[8]Andrews J B,Hayes L J,Arikawa Y,O'Dell J S,Cheney A B.Mater Sci Forum,1996;215-216:59
[9]St(?)cker C,Ratke L.Mater Sci Forum,2000;329:203
[10]Asai S.J Jpn Inst Metals,1997;61:1271
[11]De Rango P,Lees M,Lejay P,Sulpice A,Tournier R,In- gold M,Germi P,Pernet M.Nature,1991;349:770
[12]Sassa K,Morikawa H,Asai S.J Jpn Inst Metals,1997;61: 1283
[13]Jia G Q,Zhang J C,Liu Y S,Zhang X Y,Ren Z M,Cao S X,Li X,Deng K.Acta Phys Sin,2005;54:1126 (贾广强,张金仓,刘永生,张晓勇,任忠鸣,曹世勋,李喜,邓康.物理学报,2005;54:1126)
[14]Yasuda H,Ohnaka I,Yamamoto Y,Tokieda K,Kishio K. Mater Trans,2003;44:2207
[15]Asai S,Sassa K,Tahashi M.Sci Technol Adv Mater,2003; 4:455
[16]Baker H,Okamoto H.Alloy Phase Diagrams.Materials Park,Ohio:ASM International,1992:2-203
[17]Giefers H,Nicol M.J Alloy Compd,2006;422:132
[18]Cullity B D.Introduction to Magnetic Materials.Read- ing,Massachusetts:Addison-Wesley,1972:208
[19]Morikawa H,Sassa K,Asai S.Mater Trans,JIM,1998; 39:814
[20]Flemings M C.Solidification Processing.New York: McGraw-Hill,1974:159
[21]Kurz W,Fisher D J.Fundamentals of Solidification.4th Ed.,Switzerland:Trans Tech Publications,1998:69
[1] 邓聪坤,江鸿翔,赵九洲,何杰,赵雷. Ag-Ni偏晶合金凝固过程研究[J]. 金属学报, 2020, 56(2): 212-220.
[2] 王强, 董蒙, 孙金妹, 刘铁, 苑轶. 强磁场下合金凝固过程控制及功能材料制备[J]. 金属学报, 2018, 54(5): 742-756.
[3] 赵九洲, 江鸿翔. 偏晶合金凝固过程研究进展[J]. 金属学报, 2018, 54(5): 682-700.
[4] 余建波, 侯渊, 张超, 杨志彬, 王江, 任忠鸣. 静磁场对新型Co-Al-W基高温合金定向凝固组织的影响[J]. 金属学报, 2017, 53(12): 1620-1626.
[5] 钟华,李传军,王江,任忠鸣,钟云波,玄伟东. 强磁场对定向凝固Al-4.5Cu合金微观偏析的影响*[J]. 金属学报, 2016, 52(5): 575-582.
[6] 孙倩,江鸿翔,赵九洲. 微量元素Bi对Al-Pb合金凝固过程及显微组织的影响*[J]. 金属学报, 2016, 52(4): 497-504.
[7] 杜娇娇,李国建,王强,马永会,王慧敏,李萌萌. 强磁场下不同晶粒尺寸Fe薄膜生长模式演变及其对磁性能的影响*[J]. 金属学报, 2015, 51(7): 799-806.
[8] 钟华, 任忠鸣, 李传军, 钟云波, 玄伟东, 王秋良. 强磁场对Al-4.5Cu合金定向凝固过程中织构和晶界的影响[J]. 金属学报, 2015, 51(4): 473-482.
[9] 陈书, 赵九洲. Sn对Al-Pb偏晶合金凝固过程及组织的影响*[J]. 金属学报, 2014, 50(5): 561-566.
[10] 李国建, 王振, 王强, 王慧敏, 杜娇娇, 马永会, 赫冀成. 强磁场作用时间对氧化法制备的Co掺杂ZnO薄膜微观结构和光学性能的影响[J]. 金属学报, 2014, 50(12): 1538-1542.
[11] 刘印,刘铁,王强,王慧敏,王丽,赫冀成. 强磁场热处理对TbFe2和Tb0.27Dy0.73Fe1.95合金晶体取向、微观形貌和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(9): 1148-1152.
[12] 陈书,赵九洲. 偏晶合金在激光表面处理条件下的凝固行为研究[J]. 金属学报, 2013, 49(5): 537-543.
[13] 赵雷 赵九洲. Ni-Ag偏晶合金凝固过程研究[J]. 金属学报, 2012, 48(11): 1381-1386.
[14] 夏志新 张弛 杨志刚. 强磁场对低活化钢中析出行为和力学性能的影响[J]. 金属学报, 2011, 47(6): 713-719.
[15] 李海丽 赵九洲. 磁场作用下Al-Pb偏晶合金的凝固过程[J]. 金属学报, 2011, 47(1): 81-87.