Please wait a minute...
金属学报  2008, Vol. 44 Issue (10): 1224-1230     
  论文 本期目录 | 过刊浏览 |
强磁场对Al-2.89%Fe合金凝固组织的影响
班春燕;陈丹丹;韩逸;巴启先;崔建忠
东北大学材料电磁过程研究教育部重点实验室
Variety of solidification structures in Al-2.89%Fe alloy solidified under high magnetic field
;;;
东北大学
引用本文:

班春燕; 陈丹丹; 韩逸; 巴启先; 崔建忠 . 强磁场对Al-2.89%Fe合金凝固组织的影响[J]. 金属学报, 2008, 44(10): 1224-1230 .
, , , , . Variety of solidification structures in Al-2.89%Fe alloy solidified under high magnetic field[J]. Acta Metall Sin, 2008, 44(10): 1224-1230 .

全文: PDF(3082 KB)  
摘要: 考察了冷却速率、磁场强度及高梯度磁场对Al-2.89%Fe(质量分数)过共晶合金中Al3Fe 相形貌及分布规律的影响. 结果表明, 在无磁场条件下, 初生Al3Fe相沉积在试样下部; 施加12 T强磁场后, 初生Al3Fe相所受磁力作用和重力作用相平衡, 在整个试样中均匀分布, 且沿着易磁化方向[121]发生定向排列, 其取向程度不受冷却速率的影响, 但随着磁场强度的增大而加强; 在高梯度磁场中, 初生Al3Fe相所受磁力作用大于重力作用而偏聚在试样的上部, 且多个针状初生Al3Fe相结合在一起, 形成近似星状聚合体. 此外, 对强磁场的作用机理进行了分析和探讨.
关键词 Al-Fe合金Al3Fe相强磁场    
Abstract:The morphology and distribution of Al3Fe phase in hypereutectic Al-2.89%Fe alloy solidified under high magnetic field was investigated.The effects of cooling rate, magnetic intensity and high gradient magnetic field on the distribution of Al3Fe were studied. The results showed that the primary Al3Fe phase with needle-like morphology was gathered at the bottom of the sample due to the gravity force when the alloy was solidified without the high magnetic field. However, when the high magnetic field of 12T was applied, the primary Al3Fe phase distributed throughout the sample homogeneously because that the magnetic force acted on the primary Al3Fe phase balanced with the gravity force, and the primary Al3Fe phase aligned perpendicularly to the magnetic field direction with a preferred direction [121]. Its orientation extent was not affected by cooling rate, but strengthened with increasing magnetic intensity. When the sample was set at the position with a large positive gradient magnetic field, the magnetic force acted on the primary Al3Fe phase was greater than the gravity force, resulting in their segregation to the upper portion of the sample. Several needle-like primary Al3Fe phases were integrated to form the polymer with a star shape. Furthermore, the mechanism of high magnetic field was discussed.
Key wordsAl-Fe alloy    High magnetic field    Morphology    Distribution
收稿日期: 2007-12-17     
ZTFLH:  TG113.1  
[1]Tahashi M,Sassa K,Hirabayashi I,Asai S.Mater Trans, 2000;41:985
[2]Sugiyama T,Tahashi M,Sassa K,Asai S.ISIJ Int,2003; 43:855
[3]Wang H,Ren Z M,Jiang G C.Mater Sci Eng,2001;19: 119 (王晖,任忠鸣,蒋国昌.材料科学与工程,2001;19:119)
[4]Ren Z M,Li X,Wang H,Deng K,Zhuang Y Q.Mater Lett,2004;58:3405
[5]Wang H,Ren Z M,Xu K D,Huang H,Wang Q L,Yan L G.Chin J Nonferrous Metals,2004;14:1095 (王晖,任忠鸣,徐匡迪,黄晖,王秋良,严陆光.中国有色金属学报,2004;14:1095)
[6]Li X,Ren Z M,Yu J B,Wang H,Deng K.Acta Metall Sin,2005;41:685 (李喜,任忠鸣,余建波,王晖,邓康.金属学报,2005;41:685)
[7]Mondolfo L F.Aluminium Alloys:Structure and Proper- ties.London:Butterworths,1976:282
[8]Wu C Y,Li S Q,Sassa K,Chino Y,Hattori K,Asai S. Mater Trans,2005;46:1311
[9]Morikawa H,Sassa K,Asai S.Mater Trans,1998;39:814
[10]Wang H,Ren Z M,Xu K D,Huang H,Wang Q L,Yan L G.Rare Met Mater Eng,2005;34:1033 (王晖,任忠鸣,徐匡迪,黄晖,王秋良,严陆光.稀有金属材料与工程,2005;34:1033)
[11]Guo S H.Electrodynamics.Beijing:Higher Education Press,1997:118 (郭硕鸿.电动力学.北京:高等教育出版社,1997:118)
[12]Shimoji M.Liquid Metals.London:Academic Press,1977: 85,180
[13]Wang D F,Luo S H.Magnetism Physics.Beijing:Elec- tronic Industry Press,1987:12 (宛德福,罗世华.磁性物理北京:电子工业出版社,1987:12)
[1] 张建锋,蓝青,郭瑞臻,乐启炽. 交流磁场对过共晶Al-Fe合金初生相的影响[J]. 金属学报, 2019, 55(11): 1388-1394.
[2] 王强, 董蒙, 孙金妹, 刘铁, 苑轶. 强磁场下合金凝固过程控制及功能材料制备[J]. 金属学报, 2018, 54(5): 742-756.
[3] 余建波, 侯渊, 张超, 杨志彬, 王江, 任忠鸣. 静磁场对新型Co-Al-W基高温合金定向凝固组织的影响[J]. 金属学报, 2017, 53(12): 1620-1626.
[4] 钟华,李传军,王江,任忠鸣,钟云波,玄伟东. 强磁场对定向凝固Al-4.5Cu合金微观偏析的影响*[J]. 金属学报, 2016, 52(5): 575-582.
[5] 杜娇娇,李国建,王强,马永会,王慧敏,李萌萌. 强磁场下不同晶粒尺寸Fe薄膜生长模式演变及其对磁性能的影响*[J]. 金属学报, 2015, 51(7): 799-806.
[6] 钟华, 任忠鸣, 李传军, 钟云波, 玄伟东, 王秋良. 强磁场对Al-4.5Cu合金定向凝固过程中织构和晶界的影响[J]. 金属学报, 2015, 51(4): 473-482.
[7] 李国建, 王振, 王强, 王慧敏, 杜娇娇, 马永会, 赫冀成. 强磁场作用时间对氧化法制备的Co掺杂ZnO薄膜微观结构和光学性能的影响[J]. 金属学报, 2014, 50(12): 1538-1542.
[8] 刘印,刘铁,王强,王慧敏,王丽,赫冀成. 强磁场热处理对TbFe2和Tb0.27Dy0.73Fe1.95合金晶体取向、微观形貌和磁致伸缩性能的影响[J]. 金属学报, 2013, 49(9): 1148-1152.
[9] 夏志新 张弛 杨志刚. 强磁场对低活化钢中析出行为和力学性能的影响[J]. 金属学报, 2011, 47(6): 713-719.
[10] 李贵茂 王恩刚 张林 左小伟 赫冀成. 强磁场对Cu-25%Ag合金析出相及性能的影响[J]. 金属学报, 2010, 46(9): 1128-1132.
[11] 张林 王恩刚 左小伟 赫冀成. 强磁场对Cu--80%Pb过偏晶合金中富Cu颗粒 迁移行为的影响[J]. 金属学报, 2010, 46(4): 423-428.
[12] 郑斌 周伟 王轶农 齐民. Landau理论研究TiNi顺磁合金热/强磁场耦合下的马氏体相变[J]. 金属学报, 2009, 45(1): 37-42.
[13] 宫明龙; 赵骧; 王守晶; 左良 . 磁场强度对Fe--0.76%C合金先共析铁素体显微组织的影响[J]. 金属学报, 2008, 44(5): 615-618 .
[14] 张林; 王恩刚; 左小伟; 赫冀成 . 强磁场对 Cu--80%Pb过偏晶合金凝固组织的影响[J]. 金属学报, 2008, 44(2): 165-171 .
[15] 余建波; 任忠鸣; 任维丽; 邓康; 王俊 . 强磁场下电磁振荡对 Al--4.5%Cu合金凝固组织的影响[J]. 金属学报, 2008, 44(2): 172-176 .