Please wait a minute...
金属学报  2015, Vol. 51 Issue (4): 473-482    DOI: 10.11900/0412.1961.2014.00496
  本期目录 | 过刊浏览 |
强磁场对Al-4.5Cu合金定向凝固过程中织构和晶界的影响
钟华1(), 任忠鸣1, 李传军1, 钟云波1, 玄伟东1, 王秋良2
1 上海大学省部共建高品质特殊钢冶金与制备国家重点实验室, 上海 200072
2 中国科学院电工研究所, 北京 100190
TEXTURE FORMATION AND GRAIN BOUNDARY CHARACTERISTIC OF Al-4.5Cu ALLOYS DIRECTIONALLY SOLIDIFIED UNDER HIGH MAGNETIC FIELD
ZHONG Hua1(), REN Zhongming1, LI Chuanjun1, ZHONG Yunbo1, XUAN Weidong1, WANG Qiuliang2
1 State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072
2 Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190
引用本文:

钟华, 任忠鸣, 李传军, 钟云波, 玄伟东, 王秋良. 强磁场对Al-4.5Cu合金定向凝固过程中织构和晶界的影响[J]. 金属学报, 2015, 51(4): 473-482.
Hua ZHONG, Zhongming REN, Chuanjun LI, Yunbo ZHONG, Weidong XUAN, Qiuliang WANG. TEXTURE FORMATION AND GRAIN BOUNDARY CHARACTERISTIC OF Al-4.5Cu ALLOYS DIRECTIONALLY SOLIDIFIED UNDER HIGH MAGNETIC FIELD[J]. Acta Metall Sin, 2015, 51(4): 473-482.

全文: PDF(12586 KB)   HTML
摘要: 

研究了顺磁性Al-4.5Cu合金添加Al-5Ti-1B细化剂后, 在强磁场下定向凝固时凝固组织中织构的形成规律和晶界特征分布. 结果表明: 当温度梯度为27 K/cm, 未施加磁场时, 细化后晶粒取向杂乱; 施加磁场后, 随着磁场强度的提高, 晶粒位向发生变化, 晶粒沿a-Al易磁化轴〈310〉发生取向排布. 伴随〈310〉织构的生成, 晶粒中重位点阵(CSL)晶界比例提高. 熔体中具有磁晶各向异性的a-Al晶粒在磁场下受磁转矩作用发生转动, 是织构生成的主要原因. 还讨论了磁场下流体流动对织构生成和晶界的影响.

关键词 强磁场Al-4.5Cu合金Al-5Ti-1B细化剂定向凝固取向晶界特征    
Abstract

Directional solidification of Al-4.5Cu alloy refined by adding Al-5Ti-1B has been carried out to investigate the texture formation and grain boundary characteristic of the paramagnetic crystal under a high magnetic field. OM and EBSD were applied to analyze the microstructures solidified at different temperature gradients (G) and magnetic field intensities (B). The results show that at the temperature gradient of 27 K/cm, the orientations of fcc a-Al grains without magnetic field are random. However, as a high magnetic field is imposed, the easy magnetization axes 〈310〉 of the a-Al grains are aligned parallel to the direction of the magnetic field leading to 〈310〉 texture. Meanwhile, the ratio of coincidence site lattice (CSL) grain boundaries increases with the increment of magnetic field intensity and reaches its maximum value at 4 T, but decreases as the magnetic field enhances further. On the other hand, when the temperature gradient is elevated, columnar dendrite morphology is exhibited without magnetic field; while a 6 T high magnetic field is introduced, the columnar dendrites are broken and equiaxed grains of random orientations are obtained. The alignment behavior of the free crystals in melt could be attributed to the magnetic crystalline anisotropy of a-Al. Moreover, the influence of fluid flow on the texture formation and CSL grain boundary development under magnetic field is discussed. The absence of convection is benefit for grain reorientation and CSL boundary formation. The application of high static magnetic field will inhibit the macro-scale convection. However, the interaction between thermoelectric current and magnetic field will cause micro-scale fluid flow, i.e., thermoelectric magnetic convection (TEMC). The TEMC will give rise to perturbation near the solid-liquid interface leading to the appearance of freckles as well as the decreasing of the ratio of CSL boundary. Moreover, it is proposed that the formation of CSL boundary is associated with the rotation of the free grains in melt along specific crystallographic axes by magnetic torque.

Key wordshigh magnetic field    Al-4.5Cu alloy    Al-5Ti-1B refinement    directional solidification    orientation    grain boundary characteristic
    
ZTFLH:  TG146  
基金资助:* 国家重点基础研究发展计划项目2011CB010404, 国家自然科学基金项目51404148和51401116及上海市重大科技公关项目13DZ1108200, 13521101102和14521102900资助
作者简介: null

钟 华, 男, 1984年生, 博士生

图1  温度梯度为27 K/cm时, 细化后的Al-4.5Cu合金在不同磁场强度下固液界面处的纵截面组织
图2  细化后的Al-4.5Cu合金在不同温度梯度条件下, 有无磁场时固液界面处的纵截面组织
图3  温度梯度为27 K/cm时, 细化后的Al-4.5Cu合金稳定生长段内横截面晶粒的EBSD重构图
图4  细化后的Al-4.5Cu合金不同温度梯度下, 有无磁场时稳定生长段内横截面晶粒的EBSD重构图
图5  温度梯度为27 K/cm时, 细化后的Al-4.5Cu合金稳定生长段内横截面晶粒的反极图
图6  细化后的Al-4.5Cu合金不同温度梯度条件下, 有无磁场时稳定生长段内横截面晶粒的反极图
图7  温度梯度为27 K/cm时, 细化后的Al-4.5Cu合金稳定生长段内横截面晶粒在不同磁场强度下的晶界特征图
图8  a-Al晶粒在磁场中取向的示意图
[1] Engler O,Randle V. Introduction to Texture Analysis. Boca Raton: CRC Press, 2010: 8
[2] Saha R, Ray R K. Mater Sci Eng, 2010; A527: 1882
[3] Suresh K S, Kim D I, Bhaumik S K, Suwas S. Scr Mater, 2012; 66: 602
[4] Chen Y, Li J, Tang B, Kou H, Zhang F, Chang H, Zhou L. Mater Lett, 2013; 98: 254
[5] Kobayashi S, Takagi H, Watanabe T. Philos Mag, 2013; 93: 1425
[6] Garbacz A, Grabski M W. Acta Metall Mater, 1993; 41: 469
[7] Randle V. Mater Sci Technol, 2010; 26: 253
[8] Molodov D A, Konijnenberg P J. Scr Mater, 2006; 56: 977
[9] Watanabe T, Tsurekawa S, Zhao X, Zuo L. Scr Mater, 2006; 54: 969
[10] Ren Z M. Mater China, 2010; 29(6): 40
[10] (任忠鸣. 中国材料进展, 2010; 29(6): 40)
[11] Ban C Y, Chen D D, Han Y, Ba Q X, Cui J Z. Acta Metall Sin, 2008; 44: 1224
[11] (班春燕, 陈丹丹, 韩 逸, 巴启先, 崔建忠. 金属学报, 2008; 44: 1224)
[12] Zuo X W, Wang E G, Han H, Zhang L, He J C. Acta Metall Sin, 2008; 44: 1219)
[12] (左小伟, 王恩刚, 韩 欢, 张 林, 赫冀成. 金属学报, 2008; 44: 1219)
[13] Shen Y, Ren Z M, Li X, Ren W L. Acta Metall Sin, 2011; 47: 417
[13] (沈 裕, 任忠鸣, 李 喜, 任维丽. 金属学报, 2011; 47: 417)
[14] Li X, Fautrelle Y, Ren Z M, Zhang Y D, Esling C. Acta Mater, 2010; 58: 2430
[15] Li X, Ren Z M, Cao G H, Fautrelle Y, Esling C. Acta Mater, 2011; 59: 6297
[16] Watanabe T, Suzuki Y, Tanii S, Oikawa H. Philos Mag Lett, 1990; 62: 9
[17] Sun S S, Yu J B, Ren Z M, Ren W L, Deng K. Shanghai Met, 2009; 31(4): 36
[17] (孙双双, 余建波, 任忠鸣, 任维丽, 邓 康. 上海金属, 2009; 31(4): 36)
[18] Li X, Gagnoud A, Ren Z M, Fautrelle Y, Moreau R. Acta Mater, 2009; 57: 2180
[19] Li X, Fautrelle Y, Gagnoud A, Cao G, Zhang Y D, Ren Z M, Lu X, Esling C. Philos Mag Lett, 2014; 94: 118
[20] Li X, Ren Z M, Fautrelle Y. Acta Mater, 2006; 54: 5349
[21] Henry S, Minghetti T, Rappaz M. Acta Mater, 1998; 46: 6431
[22] Li X, Fautrelle Y, Ren Z M. Acta Mater, 2007; 55: 3803
[23] Sun Z, Guo M, Vleugels J, Van Der Biest O, Blanpain B. Curr Opin Solid State Mater Sci, 2012; 16: 254
[24] Mikelson A E, Karklin Y K. J Cryst Growth, 1981; 52: 524
[25] Murty B S, Kori S A, Chakraborty M. Int Mater Rev, 2002; 47: 3
[26] Davies I G, Dennis J M, Hellawell A. Metall Trans, 1970; 1: 275
[27] Zhu Y M. J Instrum Mater, 1982; 13(6): 25
[27] (朱耀明. 仪表材料, 1982; 13(6): 25)
[28] Fu H Z,Guo J J,Liu L,Li J S. Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 517
[28] (傅恒志,郭景杰,刘 林,李金山. 先进材料定向凝固. 北京: 科学出版社, 2008: 517)
[29] Li X, Ren Z M, Ren W L, Li X, Zhong Y B, Deng K, Dong J W, Chen C. Chin J Nonferrous Met, 2010; 20: 1913
[29] (李 旭, 任忠鸣, 任维丽, 李 喜, 钟云波, 邓 康, 董建文, 陈 超. 中国有色金属学报, 2010; 20: 1913)
[30] Davidson P A. Annu Rev Fluid Mech, 1999; 31: 273
[31] Li X, Fautrelle Y, Zaidat K, Gagnoud A, Ren Z M, Moreau R, Zhang Y D, Esling C. J Cryst Growth, 2010; 31: 267
[32] Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Jensen D J, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D. Mater Sci Eng, 1997; A238: 219
[33] Randle V. Acta Mater, 1998; 46: 1459
[34] Randle V. The Role of the Coincidence Site Lattice in Grain Boundary Engineering. London: Institute of Materials, Minerals and Mining, 1996: 10
[1] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] 李民, 王继杰, 李昊泽, 邢炜伟, 刘德壮, 李奥迪, 马颖澈. Y对无取向6.5%Si钢凝固组织、中温压缩变形和软化机制的影响[J]. 金属学报, 2023, 59(3): 399-412.
[4] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[5] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[6] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[7] 李民, 李昊泽, 王继杰, 马颖澈, 刘奎. 稀土Ce对薄带连铸无取向6.5%Si钢组织、高温拉伸性能和断裂模式的影响[J]. 金属学报, 2022, 58(5): 637-648.
[8] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[9] 陈瑞润, 陈德志, 王琪, 王墅, 周哲丞, 丁宏升, 傅恒志. Nb-Si基超高温合金及其定向凝固工艺的研究进展[J]. 金属学报, 2021, 57(9): 1141-1154.
[10] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[11] 张小丽, 冯丽, 杨彦红, 周亦胄, 刘贵群. 二次枝晶取向对镍基高温合金晶粒竞争生长行为的影响[J]. 金属学报, 2020, 56(7): 969-978.
[12] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[13] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[14] 孙衡,林小娉,周兵,赵圣诗,唐琴,董允. 定向凝固Mg-xGd-0.5Y合金的微观组织及拉伸变形行为[J]. 金属学报, 2020, 56(3): 340-350.
[15] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.