Please wait a minute...
金属学报  2015, Vol. 51 Issue (4): 473-482    DOI: 10.11900/0412.1961.2014.00496
  论文 本期目录 | 过刊浏览 |
强磁场对Al-4.5Cu合金定向凝固过程中织构和晶界的影响
钟华1, 任忠鸣1, 李传军1, 钟云波1, 玄伟东1, 王秋良2
1 上海大学省部共建高品质特殊钢冶金与制备国家重点实验室, 上海 200072; 2 中国科学院电工研究所, 北京 100190
TEXTURE FORMATION AND GRAIN BOUNDARY CHARACTERISTIC OF Al-4.5Cu ALLOYS DIRECTIONALLY SOLIDIFIED UNDER HIGH MAGNETIC FIELD
ZHONG Hua1, REN Zhongming1, LI Chuanjun1, ZHONG Yunbo1, XUAN Weidong1, WANG Qiuliang2
1 State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072; 2 Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190
全文: PDF(12586 KB)   HTML
摘要: 研究了顺磁性Al-4.5Cu合金添加Al-5Ti-1B细化剂后, 在强磁场下定向凝固时凝固组织中织构的形成规律和晶界特征分布. 结果表明: 当温度梯度为27 K/cm, 未施加磁场时, 细化后晶粒取向杂乱; 施加磁场后, 随着磁场强度的提高, 晶粒位向发生变化, 晶粒沿a-Al易磁化轴〈310〉发生取向排布. 伴随〈310〉织构的生成, 晶粒中重位点阵(CSL)晶界比例提高. 熔体中具有磁晶各向异性的a-Al晶粒在磁场下受磁转矩作用发生转动, 是织构生成的主要原因. 还讨论了磁场下流体流动对织构生成和晶界的影响.
关键词 强磁场Al-4.5Cu合金Al-5Ti-1B细化剂定向凝固取向晶界特征    
Abstract:Directional solidification of Al-4.5Cu alloy refined by adding Al-5Ti-1B has been carried out to investigate the texture formation and grain boundary characteristic of the paramagnetic crystal under a high magnetic field. OM and EBSD were applied to analyze the microstructures solidified at different temperature gradients (G) and magnetic field intensities (B). The results show that at the temperature gradient of 27 K/cm, the orientations of fcc a-Al grains without magnetic field are random. However, as a high magnetic field is imposed, the easy magnetization axes 〈310〉 of the a-Al grains are aligned parallel to the direction of the magnetic field leading to 〈310〉 texture. Meanwhile, the ratio of coincidence site lattice (CSL) grain boundaries increases with the increment of magnetic field intensity and reaches its maximum value at 4 T, but decreases as the magnetic field enhances further. On the other hand, when the temperature gradient is elevated, columnar dendrite morphology is exhibited without magnetic field; while a 6 T high magnetic field is introduced, the columnar dendrites are broken and equiaxed grains of random orientations are obtained. The alignment behavior of the free crystals in melt could be attributed to the magnetic crystalline anisotropy of a-Al. Moreover, the influence of fluid flow on the texture formation and CSL grain boundary development under magnetic field is discussed. The absence of convection is benefit for grain reorientation and CSL boundary formation. The application of high static magnetic field will inhibit the macro-scale convection. However, the interaction between thermoelectric current and magnetic field will cause micro-scale fluid flow, i.e., thermoelectric magnetic convection (TEMC). The TEMC will give rise to perturbation near the solid-liquid interface leading to the appearance of freckles as well as the decreasing of the ratio of CSL boundary. Moreover, it is proposed that the formation of CSL boundary is associated with the rotation of the free grains in melt along specific crystallographic axes by magnetic torque.
Key wordshigh magnetic field    Al-4.5Cu alloy    Al-5Ti-1B refinement    directional solidification    orientation    grain boundary characteristic
    
ZTFLH:  TG146  
基金资助:* 国家重点基础研究发展计划项目2011CB010404, 国家自然科学基金项目51404148和51401116及上海市重大科技公关项目13DZ1108200, 13521101102和14521102900资助
Corresponding author: Correspondent: REN Zhongming, professor, Tel: (021)56331102, E-mail: renzm2201@163.com     E-mail: renzm2201@163.com
作者简介: 钟 华, 男, 1984年生, 博士生

引用本文:

钟华, 任忠鸣, 李传军, 钟云波, 玄伟东, 王秋良. 强磁场对Al-4.5Cu合金定向凝固过程中织构和晶界的影响[J]. 金属学报, 2015, 51(4): 473-482.
ZHONG Hua, REN Zhongming, LI Chuanjun, ZHONG Yunbo, XUAN Weidong, WANG Qiuliang. TEXTURE FORMATION AND GRAIN BOUNDARY CHARACTERISTIC OF Al-4.5Cu ALLOYS DIRECTIONALLY SOLIDIFIED UNDER HIGH MAGNETIC FIELD. Acta Metall Sin, 2015, 51(4): 473-482.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2014.00496      或      https://www.ams.org.cn/CN/Y2015/V51/I4/473

Images/0895-3988-473/imgFD03  温度梯度为27 K/cm时, 细化后的Al-4.5Cu合金在不同磁场强度下固液界面处的纵截面组织
Images/0895-3988-473/imgFF35  细化后的Al-4.5Cu合金在不同温度梯度条件下, 有无磁场时固液界面处的纵截面组织
Images/0895-3988-473/img2CF  温度梯度为27 K/cm时, 细化后的Al-4.5Cu合金稳定生长段内横截面晶粒的EBSD重构图
Images/0895-3988-473/img4C3  细化后的Al-4.5Cu合金不同温度梯度下, 有无磁场时稳定生长段内横截面晶粒的EBSD重构图
Images/0895-3988-473/img61B  温度梯度为27 K/cm时, 细化后的Al-4.5Cu合金稳定生长段内横截面晶粒的反极图
Images/0895-3988-473/img7A2  细化后的Al-4.5Cu合金不同温度梯度条件下, 有无磁场时稳定生长段内横截面晶粒的反极图
Images/0895-3988-473/img8FA  温度梯度为27 K/cm时, 细化后的Al-4.5Cu合金稳定生长段内横截面晶粒在不同磁场强度下的晶界特征图
Images/0895-3988-473/imgA52  a-Al晶粒在磁场中取向的示意图
[1] Engler O, Randle V. Introduction to Texture Analysis. Boca Raton: CRC Press, 2010: 8
[2] Saha R, Ray R K. Mater Sci Eng, 2010; A527: 1882
[3] Suresh K S, Kim D I, Bhaumik S K, Suwas S. Scr Mater, 2012; 66: 602
[4] Chen Y, Li J, Tang B, Kou H, Zhang F, Chang H, Zhou L. Mater Lett, 2013; 98: 254
[5] Kobayashi S, Takagi H, Watanabe T. Philos Mag, 2013; 93: 1425
[6] Garbacz A, Grabski M W. Acta Metall Mater, 1993; 41: 469
[7] Randle V. Mater Sci Technol, 2010; 26: 253
[8] Molodov D A, Konijnenberg P J. Scr Mater, 2006; 56: 977
[9] Watanabe T, Tsurekawa S, Zhao X, Zuo L. Scr Mater, 2006; 54: 969
[10] Ren Z M. Mater China, 2010; 29(6): 40 (任忠鸣. 中国材料进展, 2010; 29(6): 40)
[11] Ban C Y, Chen D D, Han Y, Ba Q X, Cui J Z. Acta Metall Sin, 2008; 44: 1224 (班春燕, 陈丹丹, 韩 逸, 巴启先, 崔建忠. 金属学报, 2008; 44: 1224)
[12] Zuo X W, Wang E G, Han H, Zhang L, He J C. Acta Metall Sin, 2008; 44: 1219) (左小伟, 王恩刚, 韩 欢, 张 林, 赫冀成. 金属学报, 2008; 44: 1219)
[13] Shen Y, Ren Z M, Li X, Ren W L. Acta Metall Sin, 2011; 47: 417 (沈 裕, 任忠鸣, 李 喜, 任维丽. 金属学报, 2011; 47: 417)
[14] Li X, Fautrelle Y, Ren Z M, Zhang Y D, Esling C. Acta Mater, 2010; 58: 2430
[15] Li X, Ren Z M, Cao G H, Fautrelle Y, Esling C. Acta Mater, 2011; 59: 6297
[16] Watanabe T, Suzuki Y, Tanii S, Oikawa H. Philos Mag Lett, 1990; 62: 9
[17] Sun S S, Yu J B, Ren Z M, Ren W L, Deng K. Shanghai Met, 2009; 31(4): 36 (孙双双, 余建波, 任忠鸣, 任维丽, 邓 康. 上海金属, 2009; 31(4): 36)
[18] Li X, Gagnoud A, Ren Z M, Fautrelle Y, Moreau R. Acta Mater, 2009; 57: 2180
[19] Li X, Fautrelle Y, Gagnoud A, Cao G, Zhang Y D, Ren Z M, Lu X, Esling C. Philos Mag Lett, 2014; 94: 118
[20] Li X, Ren Z M, Fautrelle Y. Acta Mater, 2006; 54: 5349
[21] Henry S, Minghetti T, Rappaz M. Acta Mater, 1998; 46: 6431
[22] Li X, Fautrelle Y, Ren Z M. Acta Mater, 2007; 55: 3803
[23] Sun Z, Guo M, Vleugels J, Van Der Biest O, Blanpain B. Curr Opin Solid State Mater Sci, 2012; 16: 254
[24] Mikelson A E, Karklin Y K. J Cryst Growth, 1981; 52: 524
[25] Murty B S, Kori S A, Chakraborty M. Int Mater Rev, 2002; 47: 3
[26] Davies I G, Dennis J M, Hellawell A. Metall Trans, 1970; 1: 275
[27] Zhu Y M. J Instrum Mater, 1982; 13(6): 25 (朱耀明. 仪表材料, 1982; 13(6): 25)
[28] Fu H Z, Guo J J, Liu L, Li J S. Directional Solidification and Processing of Advanced Materials. Beijing: Science Press, 2008: 517 (傅恒志, 郭景杰, 刘 林, 李金山. 先进材料定向凝固. 北京: 科学出版社, 2008: 517)
[29] Li X, Ren Z M, Ren W L, Li X, Zhong Y B, Deng K, Dong J W, Chen C. Chin J Nonferrous Met, 2010; 20: 1913 (李 旭, 任忠鸣, 任维丽, 李 喜, 钟云波, 邓 康, 董建文, 陈 超. 中国有色金属学报, 2010; 20: 1913)
[30] Davidson P A. Annu Rev Fluid Mech, 1999; 31: 273
[31] Li X, Fautrelle Y, Zaidat K, Gagnoud A, Ren Z M, Moreau R, Zhang Y D, Esling C. J Cryst Growth, 2010; 31: 267
[32] Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Jensen D J, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D. Mater Sci Eng, 1997; A238: 219
[33] Randle V. Acta Mater, 1998; 46: 1459
[34] Randle V. The Role of the Coincidence Site Lattice in Grain Boundary Engineering. London: Institute of Materials, Minerals and Mining, 1996: 10
[1] 刘金来, 叶荔华, 周亦胄, 李金国, 孙晓峰. 一种单晶高温合金的弹性性能的各向异性[J]. 金属学报, 2020, 56(6): 855-862.
[2] 李秀程,孙明煜,赵靖霄,王学林,尚成嘉. 铁素体-贝氏体/马氏体双相钢中界面的定量化晶体学表征[J]. 金属学报, 2020, 56(4): 653-660.
[3] 孙衡,林小娉,周兵,赵圣诗,唐琴,董允. 定向凝固Mg-xGd-0.5Y合金的微观组织及拉伸变形行为[J]. 金属学报, 2020, 56(3): 340-350.
[4] 于雷,罗海文. 部分再结晶退火对无取向硅钢的磁性能与力学性能的影响[J]. 金属学报, 2020, 56(3): 291-300.
[5] 赵旭,孙元,侯星宇,张洪宇,周亦胄,丁雨田. 取向偏差对镍基单晶高温合金钎焊接头组织与力学性能的影响[J]. 金属学报, 2020, 56(2): 171-181.
[6] 许庆彦,杨聪,闫学伟,柳百成. 高温合金涡轮叶片定向凝固过程数值模拟研究进展[J]. 金属学报, 2019, 55(9): 1175-1184.
[7] 胡斌,李树索,裴延玲,宫声凯,徐惠彬. <111>取向小角偏离对一种镍基单晶高温合金蠕变性能的影响[J]. 金属学报, 2019, 55(9): 1204-1210.
[8] 张健,王莉,王栋,谢光,卢玉章,申健,楼琅洪. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[9] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[10] 方辉,薛桦,汤倩玉,张庆宇,潘诗琰,朱鸣芳. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟[J]. 金属学报, 2019, 55(5): 664-672.
[11] 孙德建,刘林,黄太文,张家晨,曹凯莉,张军,苏海军,傅恒志. 镍基单晶高温合金叶片模拟件平台处的枝晶生长和取向演化[J]. 金属学报, 2019, 55(5): 619-626.
[12] 陈占兴,丁宏升,陈瑞润,郭景杰,傅恒志. 脉冲电流作用下TiAl合金凝固组织演变及形成机理[J]. 金属学报, 2019, 55(5): 611-618.
[13] 唐文书,肖俊峰,李永君,张炯,高斯峰,南晴. 再热恢复处理对蠕变损伤定向凝固高温合金γ′相的影响[J]. 金属学报, 2019, 55(5): 601-610.
[14] 储双杰,杨勇杰,和正华,沙玉辉,左良. 基于磁畴结构交互作用的激光刻痕取向硅钢磁致伸缩系数计算[J]. 金属学报, 2019, 55(3): 362-368.
[15] 杨燕, 杨光昱, 罗时峰, 肖磊, 介万奇. Mg-14.61Gd合金的定向凝固组织及生长取向[J]. 金属学报, 2019, 55(2): 202-212.