Please wait a minute...
金属学报  2018, Vol. 54 Issue (5): 742-756    DOI: 10.11900/0412.1961.2017.00535
  金属材料的凝固专刊 本期目录 | 过刊浏览 |
强磁场下合金凝固过程控制及功能材料制备
王强1(), 董蒙1,2, 孙金妹1,2, 刘铁1, 苑轶3
1 东北大学材料电磁过程研究教育部重点实验室 沈阳 110819
2 东北大学材料科学与工程学院 沈阳 110819
3 东北大学冶金学院 沈阳 110819
Control of Solidification Process and Fabrication of Functional Materials with High Magnetic Fields
Qiang WANG1(), Meng DONG1,2, Jinmei SUN1,2, Tie LIU1, Yi YUAN3
1 Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
2 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
3 School of Metallurgy, Northeastern University, Shenyang 110819, China
引用本文:

王强, 董蒙, 孙金妹, 刘铁, 苑轶. 强磁场下合金凝固过程控制及功能材料制备[J]. 金属学报, 2018, 54(5): 742-756.
Qiang WANG, Meng DONG, Jinmei SUN, Tie LIU, Yi YUAN. Control of Solidification Process and Fabrication of Functional Materials with High Magnetic Fields[J]. Acta Metall Sin, 2018, 54(5): 742-756.

全文: PDF(14757 KB)   HTML
摘要: 

近些年来关于强磁场下材料加工过程的研究取得了长足的发展和进步。本文综述了强磁场下金属材料凝固过程控制和新材料制备的研究进展。重点介绍了强磁场下Lorentz力、热电磁力和磁化力对熔体流动、溶质分布和组织演变的影响规律;磁力矩对磁性相的晶体取向的作用规律;磁偶极间相互作用对相排列的控制作用等。同时,介绍了利用强磁场下的凝固方法制备MnSb/MnSb-Sb梯度复合材料和梯度磁致伸缩材料、各向异性材料等新型功能材料的研究进展。通过强磁场控制金属材料凝固过程可以有效改善材料的微观组织,并进一步提高材料性能,这为开发新型功能材料提供新的途径。

关键词 强磁场合金凝固功能材料梯度材料各向异性材料    
Abstract

In recent years, the research on materials processing under high magnetic fields has developed rapidly. This paper reviews the progress of solidification process control of metal materials and the preparation of new materials under high magnetic fields. The influences of Lorentz force, thermoelectromagnetic force and magnetic force on the melt flow, solute distribution and microstructure evolution in the alloy, the effects of magnetic moment on the crystal orientation of magnetic phase, and the effects of magnetic dipole-dipole interactions on phase arrangement in alloys were mainly introduced. At the same time, this paper also summarizes the progress of preparing new functional materials such as gradient MnSb/MnSb-Sb composites, gradient magnetostrictive materials, and materials which have anisotropy of crystal orientation by the solidification method under high magnetic fields. The high magnetic fields control the solidification process of the metals to improve the microstructure of the materials and further improve the material properties. This provides a new way for the development of new functional materials.

Key wordshigh magnetic field    alloy    solidification    functional material    graded material    anisotropic material
收稿日期: 2017-12-14     
ZTFLH:  TG 430.99  
基金资助:资助项目 国家自然科学基金项目Nos.51425401、51404060、51690161、51574073和51774086
作者简介:

作者简介 王 强,男,1971年生,教授,博士

图1  当磁场为0、39800和79600 A/m时,Si熔体中的温度分布曲线[34]
图2  热电磁对流效果和电磁制动效果耦合作用下的有效扩散系数与磁场感应强度关系曲线[56]
图3  不同磁场强度下定向凝固Al-4.5%Cu (质量分数)合金横、纵截面的BSE像[62]
图4  不同条件下试样的宏观组织[66]
图5  不同磁场条件下保温不同时间时Mn-89.7%Sb (质量分数)合金中MnSb/Sb-MnSb相微观组织[68]
图6  生长速率为30 μm/s时不同磁感应强度下Al-8%Fe (质量分数)合金的微观组织及与之相对应的Al3Fe含量分布[74]
图7  0和11.5 T磁场条件下保温不同时间后的Mn-89.7%Sb (质量分数)合金在纵截面的微观组织[76]
图8  TbFe2 合金经8.8 T磁场条件处理前后的反极图[84]
图9  不同梯度强磁场凝固的亚共晶Mn-89.7%Sb (质量分数)合金的微观组织及对应的初生MnSb相和Sb相沿试样自上而下的体积分数分布图[87]
图10  不同负梯度强磁场下凝固的Tb0.27Dy0.73Fe1.95合金中(Tb, Dy)Fe2相在<111>方向取向度(O<111>)及在3.184×105 A/m时磁致伸缩系数随样品位置变化曲线[91]
图11  Mn-89.7%Sb (质量分数)合金在无、有对称分布梯度强磁场条件下凝固后的饱和磁化强度分布图及对应的梯度磁场分布图[92]
图12  不同压应力条件下,母合金和半固态等温处理合金的磁致伸缩系数和磁场强度的关系[84]
图13  Bi-4.36%Mn (质量分数)合金在不同磁场条件下凝固后的宏观组织图[99]
图14  Tb0.27Dy0.73Fe1.95合金的纵向截面金相照片[100]
图15  Tb0.27Dy0.73Fe1.95 合金在50 μm/s抽拉速率下定向凝固后的纵向组织图
[1] Kurz W, Fisher D J.Fundamentals of Solidification[M]. Switzerland: Trans Tech. Publications Ltd., 1992: 3
[2] Wei X X, Xu W, Kang J L.Phase selection in solidification of undercooled Co-B alloys[J]. J. Mater. Sci. Technol., 2017, 33: 352
[3] Jung I S, Jang H S, Oh M H, et al. Microstructure control of TiAl alloys containing β stabilizers by directional solidification [J]. Mater. Sci. Eng., 2002, A329-331: 13
[4] Johnson D R, Inui H, Yamaguchi M.Directional solidification and microstructural control of the TiAlTi3Al lamellar microstructure in TiAl-Si alloys[J]. Acta Mater., 1996, 44: 2523
[5] Ding X F, Lin J P, Zhang L Q, et al.Lamellar orientation control in a Ti-46Al-5Nb alloy by directional solidification[J]. Scr. Mater., 2011, 65: 61
[6] Liang Y J, Cheng X, Wang H M.A new microsegregation model for rapid solidification multicomponent alloys and its application to single-crystal nickel-base superalloys of laser rapid directional solidification[J]. Acta Mater., 2016, 118: 17
[7] Roehling J D, Coughlin D R, Gibbs J W, et al.Rapid solidification growth mode transitions in Al-Si alloys by dynamic transmission electron microscopy[J]. Acta Mater., 2017, 131: 22
[8] Ramirez-Ledesma A L, Lopez-Molina E, Lopez H F, et al. Athermal ε-martensite transformation in a Co-20Cr alloy: Effect of rapid solidification on plate nucleation[J]. Acta Mater., 2016, 111: 138
[9] Watanabe Y, Eryu H, Matsuura K.Evaluation of three-dimensional orientation of Al3Ti platelet in Al-based functionally graded materials fabricated by a centrifugal casting technique[J]. Acta Mater., 2001, 49: 775
[10] Wang K, Zhang Z M, Yu T, et al.The transfer behavior in centrifugal casting of SiCp/Al composites[J]. J. Mater. Process. Technol., 2017, 242: 60
[11] Watanabe Y, Oike S.Formation mechanism of graded composition in Al-Al2Cu functionally graded materials fabricated by a centrifugal in situ method[J]. Acta Mater., 2005, 53: 1631
[12] Davies P, Pederson R, Coleman M, et al.The hierarchy of microstructure parameters affecting the tensile ductility in centrifugally cast and forged Ti-834 alloy during high temperature exposure in air[J]. Acta Mater., 2016, 117: 51
[13] Mo Y F, Tian Z A, Liu R S, et al.Molecular dynamics study on microstructural evolution during crystallization of rapidly supercooled zirconium melts[J]. J. Alloys Compd., 2016, 688: 654
[14] Aoyama T, Kuribayashi K.Influence of undercooling on solid/liquid interface morphology in semiconductors[J]. Acta Mater., 2000, 48: 3739
[15] Friedrich J, Reimann C, Jauss T, et al.Engulfment and pushing of Si3N4 and SiC particles during directional solidification of silicon under microgravity conditions[J]. J. Cryst. Growth, 2017, 475: 33
[16] Konishi T, Nagai H, Nakata Y, et al.Microstructure and magnetic properties of Sm2Fe17 alloy prepared by unidirectional solidification in microgravity[J]. J. Magn. Magn. Mater., 2004, 269: 48
[17] Qiu Y Q, Jia G L, Liu X H, et al.Microstructure and mechanical properties of electromagnetic centrifugal cast 1Cr25Ni20Si2 tube blank[J]. J. Iron Steel Res. Int., 2006, 13: 67
[18] Zhong Y B, Wang J, Zheng T X, et al.Homogeneous hypermonotectic alloy fabricated by electric-magnetic-compound field assisting solidification[J]. Mater. Today Proc., 2015, 2(suppl.2): S364
[19] Tang Y F, Qiu S, Miao Q, et al.Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields[J]. J. Eur. Ceram. Soc., 2016, 36: 1233
[20] Jie J C, Zou Q C, Sun J L, et al.Separation mechanism of the primary Si phase from the hypereutectic Al-Si alloy using a rotating magnetic field during solidification[J]. Acta Mater., 2014, 72: 57
[21] Li L, Xu B, Tong W P, et al.Directional growth of tin crystals controlled by combined solute concentration gradient field and static magnetic field[J]. Acta Metall. Sin., 2015, 28: 725
[22] Poodt P W G, Heijna M C R, Christianen P C M, et al. Using gradient magnetic fields to suppress convection during crystal growth[J]. Cryst. Growth Des., 2006, 6: 2275
[23] Wrobel W A, Fornalik-Wajs E, Szmyd J S.Analysis of the influence of a strong magnetic field gradient on convection process of paramagnetic fluid in the annulus between horizontal concentric cylinders[J]. J. Phys. Conf. Ser., 2012, 395: 012124
[24] Yasuda H, Ohnaka I, Fujimoto S, et al.Fabrication of aligned pores in aluminum by electrochemical dissolution of monotectic alloys solidified under a magnetic field[J]. Scr. Mater., 2006, 54: 527
[25] Wang Q, Liu T, Wang K, et al.Progress on high magnetic field-controlled transport phenomena and their effects on solidification microstructure[J]. ISIJ Int., 2014, 54: 516
[26] Li Y J, Teng Y F, Feng X H, et al.Effects of pulsed magnetic field on microsegregation of solute elements in a Ni-based single crystal superalloy[J]. J. Mater. Sci. Technol., 2017, 33: 105
[27] Li X, Ren Z M, Yu J B, et al.Solidification structure of primary MnBi phase in Bi-Mn alloy under high magnetic field[J]. Acta. Metall. Sin., 2005, 41: 685(李喜, 任忠鸣, 余建波等. Bi-Mn合金片状初生MnBi相在强磁场中的凝固组织[J]. 金属学报, 2005, 41: 685)
[28] De Rango P, Lees M, Lejay P, et al.Texturing of magnetic materials at high temperature by solidification in a magnetic field[J]. Nature, 1991, 349: 770
[29] Asai S, Sassa K S, Tahashi M.Crystal orientation of non-magnetic materials by imposition of a high magnetic field[J]. Sci. Technol. Adv. Mater., 2003, 4: 455
[30] Utech H P, Flemings M C.Elimination of solute banding in indium antimonide crystals by growth in a magnetic field[J]. J. Appl. Phys., 1966, 37: 2021
[31] Bergman M I, Fearn D R, Bloxham J.Suppression of channel convection in solidifying Pb-Sn alloys via an applied magnetic field[J]. Metall. Mater. Trans., 1999, 30A: 1809
[32] Frederick R A.Method for controlling oxygen content of silicon crystals using a combination of cusp magnetic field and crystal and crucible rotation rates [P]. US Pat, 5178720, 1993
[33] Sonokawa S, Hayashi T, Iwasaki A, et al.Method of manufacturing single crystal of silicon [P]. US Pat, 5882398, 1999
[34] Hoshikawa K.Czochralski silicon crystal growth in the vertical magnetic field[J]. Jpn. J. Appl. Phys., 1982, 21: L545
[35] Fusegawa I, Ohta T, Nagasawa S.Growth of single-crystal silicon semiconductor under high magnetic-field conditions[J]. Teion Kogaku, 1998, 33: 54(布施川泉, 太田友彦, 長澤繁. 強磁場中での半導体シリコン単結晶の製造[J]. 低温工学, 1998, 33: 54)
[36] Iino E, Yoshizawa K, Takano K, et al.Growth of HMCZ Si single crystals with 12" diameter[J]. J. Jpn. Assoc. Cryst. Growth, 1996, 23: 201(飯野栄一, 吉澤健, 高野清隆等. HMCZ法による12"? Si単結晶の育成[J]. 日本結晶成長学会誌, 1996, 23: 201)
[37] Wang C J, Wang Q, Wang Z Y, et al.Phase alignment and crystal orientation of Al3Ni in Al-Ni alloy by imposition of a uniform high magnetic field[J]. J. Cryst. Growth, 2008, 310: 1256
[38] Wang Q, Wang C J, Liu T, et al.Control of solidified structures in aluminum-silicon alloys by high magnetic fields[J]. J. Mater. Sci., 2007, 42: 10000
[39] Liu T, Wang Q, Zhang H W, et al.Effects of high magnetic fields on solidification microstructure of Al-Si alloys[J]. J. Mater. Sci., 2011, 46: 1628
[40] Oreper G M, Szekely J.The effect of a magnetic field on transport phenomena in a bridgman-stockbarger crystal growth[J]. J. Cryst. Growth, 1984, 67: 405
[41] Kim D H, Adornato P M, Brown R A.Effect of vertical magnetic field on convection and segregation in vertical Bridgman crystal growth[J]. J. Cryst. Growth, 1988, 89: 339
[42] Motakef S.Magnetic field elimination of convective interference with segregation during vertical-Bridgman growth of doped semiconductors[J]. J. Cryst. Growth, 1990, 104: 833
[43] Kaddeche S, Hadid H B, Henry D.Macrosegregation and convection in the horizontal Bridgman configuration II. Concentrated alloys[J]. J. Cryst. Growth, 1994, 141: 279
[44] Sampath R, Zabaras N.Numerical study of convection in the directional solidification of a binary alloy driven by the combined action of buoyancy, surface tension, and electromagnetic forces[J]. J. Comput. Phys., 2001, 168: 384
[45] Samanta D, Zabaras N.Control of macrosegregation during the solidification of alloys using magnetic fields[J]. Int. J. Heat Mass Transfer, 2006, 49: 4850
[46] Miyazaki K, Inoue H, Kinoto T, et al.Heat transfer and temperature fluctuation of lithium flowing under transverse magnetic field[J]. J. Nucl. Sci. Technol., 1986, 23: 582
[47] Kobayashi S.Effects of an external magnetic field on solute distribution in Czochralski grown crystals—A theoretical analysis[J]. J. Cryst. Growth, 1986, 75: 301
[48] Cao F, Yang F F, Kang H J, et al.Effect of traveling magnetic field on solute distribution and dendritic growth in unidirectionally solidifying Sn-50 wt%Pb alloy: An in situ observation[J]. J. Cryst. Growth, 2016, 450: 91
[49] Teimouri H, Afrand M, Sina N, et al.Natural convection of liquid metal in a horizontal cylindrical annulus under radial magnetic field[J]. Int. J. Appl. Electrom., 2015, 49: 453
[50] Sparrow E M, Cess R D.The effect of a magnetic field on free convection heat transfer[J]. Int. J. Heat Mass Transf., 1961, 3: 267
[51] Gel'fgat Y M, Gorbunov L A. An additional source of forced convection in semiconductor melts during single-crystal growth in magnetic fields[J]. Sov. Phys. Dokl., 1989, 34: 470
[52] Wang Q, Li D G, Wang K, et al.Effects of high uniform magnetic fields on diffusion behavior at the Cu/Al solid/liquid interface[J]. Scr. Mater., 2007, 56: 485
[53] Li D G, Wang Q, Li G J, et al.Diffusion layer growth at Zn/Cu interface under uniform and gradient high magnetic fields[J]. Mater. Sci. Eng., 2008, A495: 244
[54] Li D G, Wang Q, Liu T, et al.Growth of diffusion layers at liquid Al-solid Cu interface under uniform and gradient high magnetic field conditions[J]. Mater. Chem. Phys., 2009, 117: 504
[55] Li D G, Wang Q, Li G J, et al.High magnetic field controlled interdiffusion behavior at Bi-Bi0.4Sb0.6 liquid/solid interface[J]. J. Mater. Sci., 2009, 44: 1918
[56] Li D G.Study on the diffusion behavior and interfacial reaction of heterogeneous metal systems controlled by high magnetic fields [D]. Shenyang: Northeastern University, 2009(李东刚. 异质金属体系扩散行为和界面反应的强磁场控制研究 [D]. 沈阳: 东北大学, 2009)
[57] Li X, Fautrelle Y, Ren Z M.Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field[J]. Acta Mater., 2007, 55: 3803
[58] Li X, Fautrelle Y, Ren Z M.Influence of an axial high magnetic field on the liquid-solid transformation in Al-Cu hypoeutectic alloys and on the microstructure of the solid[J]. Acta Mater., 2007, 55: 1377
[59] Li X, Fautrelle Y, Ren Z M, et al.Effect of a high magnetic field on the morphological instability and irregularity of the interface of a binary alloy during directional solidification[J]. Acta Mater., 2009, 57: 1689
[60] Zhong H, Li C J, Ren Z M, et al.Effect of interdendritic thermoelectric magnetic convection on evolution of tertiary dendrite during directional solidification[J]. J. Cryst. Growth, 2016, 439: 66
[61] Zhong H, Li C J, Wang J, et al.Effect of a high static magnetic field on the origin of stray grains during directional solidification[J]. Mater. Trans., 2016, 57: 1230
[62] Zhong H, Li C J, Wang J, et al.Effect of a high static magnetic field on microsegregation of directionally solidified Al-4.5Cu alloy[J]. Acta Metall. Sin., 2016, 52: 575(钟华, 李传军, 王江等. 强磁场对定向凝固Al-4.5Cu合金微观偏析的影响[J]. 金属学报, 2016, 52: 575)
[63] Amano S, Iwai K, Asai S.Non-contact generation of compression waves in a liquid metal by imposing a high frequency electromagnetic field[J]. ISIJ Int., 1997, 37: 962
[64] Wang Q, He J C, Iwai K, et al.A study of the characteristics of the magnetic acoustic wave propagating in a strong magnetic field[J]. Prog. Nat. Sci., 2002, 12: 1026(王强, 赫冀成, 岩井一彦等. 在强磁场中传播的磁声波的特性研究[J]. 自然科学进展, 2002, 12: 1026)
[65] Wang Q, He J C, Iwai K, et al.Generation of electromagnetic ultrasonic waves in liquid metal under high frequency electromagnetic forces[J]. Mater. Sci. Technol., 2003, 11: 14(王强, 赫冀成, 岩井一彦等. 高频电磁力作用下金属液内电磁超声波的生成[J]. 材料科学与工艺, 2003, 11: 14)
[66] Wang Q, He J C, Kawai S, et al.Direct generation of intense compression waves in molten metals by using a high static magnetic field and their application[J]. J. Mater. Sci. Technol., 2003, 19: 5
[67] Chen Q W.Magnetic Chemistry and Materials Synthesis [M]. Beijing: Higher Education Press, 2012: 26(陈乾旺. 磁化学与材料合成 [M]. 高等教育出版社, 2012: 26)
[68] Liu T, Wang Q, Gao A, et al.Fabrication of functionally graded materials by a semi-solid forming process under magnetic field gradients[J]. Scr. Mater., 2007, 57: 992
[69] Ratke L, Voorhees P W.Growth and Coarsening: Ostwald Ripening in Material Processing[M]. Berlin, Heidelberg: Springer, 2002: 117
[70] Boos A, Lamparter P, Steeb S.Nahordnung in bin?ren schmelzen und mischkristallen/short range order in binary melts and binary solid solubilities[J]. Z. Naturforsch., 1977, 32A: 1222
[71] Zu F Q, Zhu Z G, Guo L J, et al.Observation of an anomalous discontinuous liquid-structure change with temperature[J]. Phys. Rev. Lett., 2002, 89: 125505
[72] Klein S, Holland-Moritz D, Herlach D M, et al.Short-range order of undercooled melts of PdZr2 intermetallic compound studied by X-ray and neutron scattering experiments[J]. Europhys. Lett., 2013, 102: 36001
[73] Liu T, Wang Q, Hirota N, et al.In situ control of the distributions of alloying elements in alloys in liquid state using high magnetic field gradients[J]. J. Cryst. Growth, 2011, 335: 121
[74] Wu M X, Liu T, Dong M, et al.Directional solidification of Al-8wt.%Fe alloy under high magnetic field gradient[J]. J. Appl. Phys., 2017, 121: 064901
[75] Mikelson A E, Karklin Y K.Control of crystallization processes by means of magnetic fields[J]. J. Cryst. Growth, 1981, 52: 524
[76] Liu T, Wang Q, Zhang C, et al.Formation of chainlike structures in an Mn-89.7wt.%Sb alloy during isothermal annealing process in the semisolid state in a high magnetic field[J]. J. Mater. Res., 2009, 24: 2321
[77] Lou C S, Wang Q, Liu T, et al.Effects of a high magnetic field on the coarsening of MnBi grains solidified from isothermal annealed semi-solid melt[J]. J. Alloys Compd., 2010, 505: 96
[78] Ma Y W, Wang Z T. To enhance Jc of Bi-2223 Ag-sheathed superconducting tapes by improving grain alignment with magnetic field [J]. Physica, 1997, 282-287C: 2619
[79] Chen K, Maheswaran B, Liu Y P, et al.Critical current enhancement in field-oriented YBa2Cu3O7-δ[J]. Appl. Phys. Lett., 1989, 55: 289
[80] Farrell D E, Chandrasekhar B S, De Guire M R, et al. Superconducting properties of aligned crystalline grains of Y1Ba2Cu3O7-δ[J]. Phys. Rev., 1987, 36B: 4025
[81] Stassen S, Cloots R, Vanderbemden P, et al.Magnetic alignment in 2212 Bi-based superconducting system: Part I. Magnetic orientation of Bi2Sr2Ca1-x(RE)xCu2O8-y [(RE)=Gd, Dy, Ho, Er] powder dispersed in epoxy resin at room temperature[J]. J. Mater. Res., 1996, 11: 1082
[82] Tkaczyk J E, Lay K W.Effect of grain alignment and processing temperature on critical currents in YBa2Cu3O7-δ sintered compacts[J]. J. Mater. Res., 1990, 5: 1368
[83] Legrand B A, Chateigner D, De La Bathie R P, et al. Orientation of samarium-cobalt compounds by solidification in a magnetic field [J]. J. Alloys Compd., 1998, 275-277: 660
[84] Wang Q, Liu Y, Liu T, et al.Magnetostriction of TbFe2-based alloy treated in a semi-solid state with a high magnetic field[J]. Appl. Phys. Lett., 2012, 101: 132406
[85] Suresh S.Graded materials for resistance to contact deformation and damage[J]. Science, 2001, 292: 2447
[86] Bever M B, Duwez P E.Gradients in composite materials[J]. Mater. Sci. Eng., 1972, 10: 1
[87] Wang Q, Liu T, Gao A, et al.A novel method for in situ formation of bulk layered composites with compositional gradients by magnetic field gradient[J]. Scr. Mater., 2007, 56: 1087
[88] Wagne C N J. Liquid Metals[M]. New York: Marcel Dekker, 1972: 461
[89] Steinberg D J.A simple relationship between the temperature dependence of the density of liquid metals and their boiling temperatures[J]. Metall. Trans., 1974, 5: 1341
[90] Liu T, Wang Q, Gao A, et al.Distribution of alloying elements and the corresponding structural evolution of Mn-Sb alloys in high magnetic field gradients[J]. J. Mater. Res., 2010, 25: 1718
[91] Gao P F, Liu T, Dong M, et al.Magnetostrictive gradient in Tb0.27Dy0.73Fe1.95 induced by high magnetic field gradient applied during solidification[J]. Funct. Mater. Lett., 2016, 9: 1650003
[92] Dong M, Liu T, Liao J, et al.In situ preparation of symmetrically graded microstructures by solidification in high-gradient magnetic field after melt and partial-melt processes[J]. J. Alloys Compd., 2016, 689: 1020
[93] Clark A E, Cullen J R, Sato K.Magnetostriction of single crystal and polycrystal rare earth-Fe2 compounds[J]. AIP Conf. Proc., 1975, 24: 670
[94] Clark A E, Wun-Fogle M.Modern magnetostrictive materials: Classical and nonclassical alloys [A]. Proceedings of SPIE Volume 4699, Smart Structures and Materials 2002: Active Materials: Behavior and Mechanics[C]. San Diego, California: SPIE, 2002, 4699: 421
[95] Savitsky E M, Torchinova R S, Turanov S A.Effect of crystallization in magnetic field on the structure and magnetic properties of Bi-Mn alloys[J]. J. Cryst. Growth, 1981, 52: 519
[96] Beaugnon E, Bourgault D, Braithwaite D, et al.Material processing in high static magnetic field. A review of an experimental study on levitation, phase separation, convection and texturation[J]. J. Phys. I France, 1993, 3: 399
[97] Gaucherand F, Beaugnon E. Magnetic texturing in ferromagnetic cobalt alloys [J]. Physica, 2004, 346-347B: 262
[98] Gaucherand F, Beaugnon E. Magnetic susceptibility of high-Curie-temperature alloys near their melting point [J]. Physica, 2001, 294-295B: 96
[99] Wang Q, Lou C S, Liu T, et al.Fabrication of MnBi/Bi composite using dilute master alloy solidification under high magnetic field gradients[J]. J. Phys., 2009, 42D: 025001
[100] Liu T, Liu Y, Wang Q, et al.Microstructural, magnetic and magnetostrictive properties of Tb0.3Dy0.7Fe1.95 prepared by solidification in a high magnetic field[J]. J. Phys., 2013, 46D: 125005
[1] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] 毕中南, 秦海龙, 刘沛, 史松宜, 谢锦丽, 张继. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] 郑亮, 张强, 李周, 张国庆. /降氧过程对高温合金粉末表面特性和合金性能的影响:粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[5] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[6] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[7] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[8] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[9] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[10] 杜金辉, 毕中南, 曲敬龙. 三联冶炼GH4169合金研究进展[J]. 金属学报, 2023, 59(9): 1159-1172.
[11] 李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208.
[12] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[13] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[14] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[15] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.