|
|
强磁场下合金凝固过程控制及功能材料制备 |
王强1( ), 董蒙1,2, 孙金妹1,2, 刘铁1, 苑轶3 |
1 东北大学材料电磁过程研究教育部重点实验室 沈阳 110819 2 东北大学材料科学与工程学院 沈阳 110819 3 东北大学冶金学院 沈阳 110819 |
|
Control of Solidification Process and Fabrication of Functional Materials with High Magnetic Fields |
Qiang WANG1( ), Meng DONG1,2, Jinmei SUN1,2, Tie LIU1, Yi YUAN3 |
1 Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China 2 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 3 School of Metallurgy, Northeastern University, Shenyang 110819, China |
引用本文:
王强, 董蒙, 孙金妹, 刘铁, 苑轶. 强磁场下合金凝固过程控制及功能材料制备[J]. 金属学报, 2018, 54(5): 742-756.
Qiang WANG,
Meng DONG,
Jinmei SUN,
Tie LIU,
Yi YUAN.
Control of Solidification Process and Fabrication of Functional Materials with High Magnetic Fields[J]. Acta Metall Sin, 2018, 54(5): 742-756.
[1] | Kurz W, Fisher D J.Fundamentals of Solidification[M]. Switzerland: Trans Tech. Publications Ltd., 1992: 3 | [2] | Wei X X, Xu W, Kang J L.Phase selection in solidification of undercooled Co-B alloys[J]. J. Mater. Sci. Technol., 2017, 33: 352 | [3] | Jung I S, Jang H S, Oh M H, et al. Microstructure control of TiAl alloys containing β stabilizers by directional solidification [J]. Mater. Sci. Eng., 2002, A329-331: 13 | [4] | Johnson D R, Inui H, Yamaguchi M.Directional solidification and microstructural control of the TiAlTi3Al lamellar microstructure in TiAl-Si alloys[J]. Acta Mater., 1996, 44: 2523 | [5] | Ding X F, Lin J P, Zhang L Q, et al.Lamellar orientation control in a Ti-46Al-5Nb alloy by directional solidification[J]. Scr. Mater., 2011, 65: 61 | [6] | Liang Y J, Cheng X, Wang H M.A new microsegregation model for rapid solidification multicomponent alloys and its application to single-crystal nickel-base superalloys of laser rapid directional solidification[J]. Acta Mater., 2016, 118: 17 | [7] | Roehling J D, Coughlin D R, Gibbs J W, et al.Rapid solidification growth mode transitions in Al-Si alloys by dynamic transmission electron microscopy[J]. Acta Mater., 2017, 131: 22 | [8] | Ramirez-Ledesma A L, Lopez-Molina E, Lopez H F, et al. Athermal ε-martensite transformation in a Co-20Cr alloy: Effect of rapid solidification on plate nucleation[J]. Acta Mater., 2016, 111: 138 | [9] | Watanabe Y, Eryu H, Matsuura K.Evaluation of three-dimensional orientation of Al3Ti platelet in Al-based functionally graded materials fabricated by a centrifugal casting technique[J]. Acta Mater., 2001, 49: 775 | [10] | Wang K, Zhang Z M, Yu T, et al.The transfer behavior in centrifugal casting of SiCp/Al composites[J]. J. Mater. Process. Technol., 2017, 242: 60 | [11] | Watanabe Y, Oike S.Formation mechanism of graded composition in Al-Al2Cu functionally graded materials fabricated by a centrifugal in situ method[J]. Acta Mater., 2005, 53: 1631 | [12] | Davies P, Pederson R, Coleman M, et al.The hierarchy of microstructure parameters affecting the tensile ductility in centrifugally cast and forged Ti-834 alloy during high temperature exposure in air[J]. Acta Mater., 2016, 117: 51 | [13] | Mo Y F, Tian Z A, Liu R S, et al.Molecular dynamics study on microstructural evolution during crystallization of rapidly supercooled zirconium melts[J]. J. Alloys Compd., 2016, 688: 654 | [14] | Aoyama T, Kuribayashi K.Influence of undercooling on solid/liquid interface morphology in semiconductors[J]. Acta Mater., 2000, 48: 3739 | [15] | Friedrich J, Reimann C, Jauss T, et al.Engulfment and pushing of Si3N4 and SiC particles during directional solidification of silicon under microgravity conditions[J]. J. Cryst. Growth, 2017, 475: 33 | [16] | Konishi T, Nagai H, Nakata Y, et al.Microstructure and magnetic properties of Sm2Fe17 alloy prepared by unidirectional solidification in microgravity[J]. J. Magn. Magn. Mater., 2004, 269: 48 | [17] | Qiu Y Q, Jia G L, Liu X H, et al.Microstructure and mechanical properties of electromagnetic centrifugal cast 1Cr25Ni20Si2 tube blank[J]. J. Iron Steel Res. Int., 2006, 13: 67 | [18] | Zhong Y B, Wang J, Zheng T X, et al.Homogeneous hypermonotectic alloy fabricated by electric-magnetic-compound field assisting solidification[J]. Mater. Today Proc., 2015, 2(suppl.2): S364 | [19] | Tang Y F, Qiu S, Miao Q, et al.Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields[J]. J. Eur. Ceram. Soc., 2016, 36: 1233 | [20] | Jie J C, Zou Q C, Sun J L, et al.Separation mechanism of the primary Si phase from the hypereutectic Al-Si alloy using a rotating magnetic field during solidification[J]. Acta Mater., 2014, 72: 57 | [21] | Li L, Xu B, Tong W P, et al.Directional growth of tin crystals controlled by combined solute concentration gradient field and static magnetic field[J]. Acta Metall. Sin., 2015, 28: 725 | [22] | Poodt P W G, Heijna M C R, Christianen P C M, et al. Using gradient magnetic fields to suppress convection during crystal growth[J]. Cryst. Growth Des., 2006, 6: 2275 | [23] | Wrobel W A, Fornalik-Wajs E, Szmyd J S.Analysis of the influence of a strong magnetic field gradient on convection process of paramagnetic fluid in the annulus between horizontal concentric cylinders[J]. J. Phys. Conf. Ser., 2012, 395: 012124 | [24] | Yasuda H, Ohnaka I, Fujimoto S, et al.Fabrication of aligned pores in aluminum by electrochemical dissolution of monotectic alloys solidified under a magnetic field[J]. Scr. Mater., 2006, 54: 527 | [25] | Wang Q, Liu T, Wang K, et al.Progress on high magnetic field-controlled transport phenomena and their effects on solidification microstructure[J]. ISIJ Int., 2014, 54: 516 | [26] | Li Y J, Teng Y F, Feng X H, et al.Effects of pulsed magnetic field on microsegregation of solute elements in a Ni-based single crystal superalloy[J]. J. Mater. Sci. Technol., 2017, 33: 105 | [27] | Li X, Ren Z M, Yu J B, et al.Solidification structure of primary MnBi phase in Bi-Mn alloy under high magnetic field[J]. Acta. Metall. Sin., 2005, 41: 685(李喜, 任忠鸣, 余建波等. Bi-Mn合金片状初生MnBi相在强磁场中的凝固组织[J]. 金属学报, 2005, 41: 685) | [28] | De Rango P, Lees M, Lejay P, et al.Texturing of magnetic materials at high temperature by solidification in a magnetic field[J]. Nature, 1991, 349: 770 | [29] | Asai S, Sassa K S, Tahashi M.Crystal orientation of non-magnetic materials by imposition of a high magnetic field[J]. Sci. Technol. Adv. Mater., 2003, 4: 455 | [30] | Utech H P, Flemings M C.Elimination of solute banding in indium antimonide crystals by growth in a magnetic field[J]. J. Appl. Phys., 1966, 37: 2021 | [31] | Bergman M I, Fearn D R, Bloxham J.Suppression of channel convection in solidifying Pb-Sn alloys via an applied magnetic field[J]. Metall. Mater. Trans., 1999, 30A: 1809 | [32] | Frederick R A.Method for controlling oxygen content of silicon crystals using a combination of cusp magnetic field and crystal and crucible rotation rates [P]. US Pat, 5178720, 1993 | [33] | Sonokawa S, Hayashi T, Iwasaki A, et al.Method of manufacturing single crystal of silicon [P]. US Pat, 5882398, 1999 | [34] | Hoshikawa K.Czochralski silicon crystal growth in the vertical magnetic field[J]. Jpn. J. Appl. Phys., 1982, 21: L545 | [35] | Fusegawa I, Ohta T, Nagasawa S.Growth of single-crystal silicon semiconductor under high magnetic-field conditions[J]. Teion Kogaku, 1998, 33: 54(布施川泉, 太田友彦, 長澤繁. 強磁場中での半導体シリコン単結晶の製造[J]. 低温工学, 1998, 33: 54) | [36] | Iino E, Yoshizawa K, Takano K, et al.Growth of HMCZ Si single crystals with 12" diameter[J]. J. Jpn. Assoc. Cryst. Growth, 1996, 23: 201(飯野栄一, 吉澤健, 高野清隆等. HMCZ法による12"? Si単結晶の育成[J]. 日本結晶成長学会誌, 1996, 23: 201) | [37] | Wang C J, Wang Q, Wang Z Y, et al.Phase alignment and crystal orientation of Al3Ni in Al-Ni alloy by imposition of a uniform high magnetic field[J]. J. Cryst. Growth, 2008, 310: 1256 | [38] | Wang Q, Wang C J, Liu T, et al.Control of solidified structures in aluminum-silicon alloys by high magnetic fields[J]. J. Mater. Sci., 2007, 42: 10000 | [39] | Liu T, Wang Q, Zhang H W, et al.Effects of high magnetic fields on solidification microstructure of Al-Si alloys[J]. J. Mater. Sci., 2011, 46: 1628 | [40] | Oreper G M, Szekely J.The effect of a magnetic field on transport phenomena in a bridgman-stockbarger crystal growth[J]. J. Cryst. Growth, 1984, 67: 405 | [41] | Kim D H, Adornato P M, Brown R A.Effect of vertical magnetic field on convection and segregation in vertical Bridgman crystal growth[J]. J. Cryst. Growth, 1988, 89: 339 | [42] | Motakef S.Magnetic field elimination of convective interference with segregation during vertical-Bridgman growth of doped semiconductors[J]. J. Cryst. Growth, 1990, 104: 833 | [43] | Kaddeche S, Hadid H B, Henry D.Macrosegregation and convection in the horizontal Bridgman configuration II. Concentrated alloys[J]. J. Cryst. Growth, 1994, 141: 279 | [44] | Sampath R, Zabaras N.Numerical study of convection in the directional solidification of a binary alloy driven by the combined action of buoyancy, surface tension, and electromagnetic forces[J]. J. Comput. Phys., 2001, 168: 384 | [45] | Samanta D, Zabaras N.Control of macrosegregation during the solidification of alloys using magnetic fields[J]. Int. J. Heat Mass Transfer, 2006, 49: 4850 | [46] | Miyazaki K, Inoue H, Kinoto T, et al.Heat transfer and temperature fluctuation of lithium flowing under transverse magnetic field[J]. J. Nucl. Sci. Technol., 1986, 23: 582 | [47] | Kobayashi S.Effects of an external magnetic field on solute distribution in Czochralski grown crystals—A theoretical analysis[J]. J. Cryst. Growth, 1986, 75: 301 | [48] | Cao F, Yang F F, Kang H J, et al.Effect of traveling magnetic field on solute distribution and dendritic growth in unidirectionally solidifying Sn-50 wt%Pb alloy: An in situ observation[J]. J. Cryst. Growth, 2016, 450: 91 | [49] | Teimouri H, Afrand M, Sina N, et al.Natural convection of liquid metal in a horizontal cylindrical annulus under radial magnetic field[J]. Int. J. Appl. Electrom., 2015, 49: 453 | [50] | Sparrow E M, Cess R D.The effect of a magnetic field on free convection heat transfer[J]. Int. J. Heat Mass Transf., 1961, 3: 267 | [51] | Gel'fgat Y M, Gorbunov L A. An additional source of forced convection in semiconductor melts during single-crystal growth in magnetic fields[J]. Sov. Phys. Dokl., 1989, 34: 470 | [52] | Wang Q, Li D G, Wang K, et al.Effects of high uniform magnetic fields on diffusion behavior at the Cu/Al solid/liquid interface[J]. Scr. Mater., 2007, 56: 485 | [53] | Li D G, Wang Q, Li G J, et al.Diffusion layer growth at Zn/Cu interface under uniform and gradient high magnetic fields[J]. Mater. Sci. Eng., 2008, A495: 244 | [54] | Li D G, Wang Q, Liu T, et al.Growth of diffusion layers at liquid Al-solid Cu interface under uniform and gradient high magnetic field conditions[J]. Mater. Chem. Phys., 2009, 117: 504 | [55] | Li D G, Wang Q, Li G J, et al.High magnetic field controlled interdiffusion behavior at Bi-Bi0.4Sb0.6 liquid/solid interface[J]. J. Mater. Sci., 2009, 44: 1918 | [56] | Li D G.Study on the diffusion behavior and interfacial reaction of heterogeneous metal systems controlled by high magnetic fields [D]. Shenyang: Northeastern University, 2009(李东刚. 异质金属体系扩散行为和界面反应的强磁场控制研究 [D]. 沈阳: 东北大学, 2009) | [57] | Li X, Fautrelle Y, Ren Z M.Influence of thermoelectric effects on the solid-liquid interface shape and cellular morphology in the mushy zone during the directional solidification of Al-Cu alloys under a magnetic field[J]. Acta Mater., 2007, 55: 3803 | [58] | Li X, Fautrelle Y, Ren Z M.Influence of an axial high magnetic field on the liquid-solid transformation in Al-Cu hypoeutectic alloys and on the microstructure of the solid[J]. Acta Mater., 2007, 55: 1377 | [59] | Li X, Fautrelle Y, Ren Z M, et al.Effect of a high magnetic field on the morphological instability and irregularity of the interface of a binary alloy during directional solidification[J]. Acta Mater., 2009, 57: 1689 | [60] | Zhong H, Li C J, Ren Z M, et al.Effect of interdendritic thermoelectric magnetic convection on evolution of tertiary dendrite during directional solidification[J]. J. Cryst. Growth, 2016, 439: 66 | [61] | Zhong H, Li C J, Wang J, et al.Effect of a high static magnetic field on the origin of stray grains during directional solidification[J]. Mater. Trans., 2016, 57: 1230 | [62] | Zhong H, Li C J, Wang J, et al.Effect of a high static magnetic field on microsegregation of directionally solidified Al-4.5Cu alloy[J]. Acta Metall. Sin., 2016, 52: 575(钟华, 李传军, 王江等. 强磁场对定向凝固Al-4.5Cu合金微观偏析的影响[J]. 金属学报, 2016, 52: 575) | [63] | Amano S, Iwai K, Asai S.Non-contact generation of compression waves in a liquid metal by imposing a high frequency electromagnetic field[J]. ISIJ Int., 1997, 37: 962 | [64] | Wang Q, He J C, Iwai K, et al.A study of the characteristics of the magnetic acoustic wave propagating in a strong magnetic field[J]. Prog. Nat. Sci., 2002, 12: 1026(王强, 赫冀成, 岩井一彦等. 在强磁场中传播的磁声波的特性研究[J]. 自然科学进展, 2002, 12: 1026) | [65] | Wang Q, He J C, Iwai K, et al.Generation of electromagnetic ultrasonic waves in liquid metal under high frequency electromagnetic forces[J]. Mater. Sci. Technol., 2003, 11: 14(王强, 赫冀成, 岩井一彦等. 高频电磁力作用下金属液内电磁超声波的生成[J]. 材料科学与工艺, 2003, 11: 14) | [66] | Wang Q, He J C, Kawai S, et al.Direct generation of intense compression waves in molten metals by using a high static magnetic field and their application[J]. J. Mater. Sci. Technol., 2003, 19: 5 | [67] | Chen Q W.Magnetic Chemistry and Materials Synthesis [M]. Beijing: Higher Education Press, 2012: 26(陈乾旺. 磁化学与材料合成 [M]. 高等教育出版社, 2012: 26) | [68] | Liu T, Wang Q, Gao A, et al.Fabrication of functionally graded materials by a semi-solid forming process under magnetic field gradients[J]. Scr. Mater., 2007, 57: 992 | [69] | Ratke L, Voorhees P W.Growth and Coarsening: Ostwald Ripening in Material Processing[M]. Berlin, Heidelberg: Springer, 2002: 117 | [70] | Boos A, Lamparter P, Steeb S.Nahordnung in bin?ren schmelzen und mischkristallen/short range order in binary melts and binary solid solubilities[J]. Z. Naturforsch., 1977, 32A: 1222 | [71] | Zu F Q, Zhu Z G, Guo L J, et al.Observation of an anomalous discontinuous liquid-structure change with temperature[J]. Phys. Rev. Lett., 2002, 89: 125505 | [72] | Klein S, Holland-Moritz D, Herlach D M, et al.Short-range order of undercooled melts of PdZr2 intermetallic compound studied by X-ray and neutron scattering experiments[J]. Europhys. Lett., 2013, 102: 36001 | [73] | Liu T, Wang Q, Hirota N, et al.In situ control of the distributions of alloying elements in alloys in liquid state using high magnetic field gradients[J]. J. Cryst. Growth, 2011, 335: 121 | [74] | Wu M X, Liu T, Dong M, et al.Directional solidification of Al-8wt.%Fe alloy under high magnetic field gradient[J]. J. Appl. Phys., 2017, 121: 064901 | [75] | Mikelson A E, Karklin Y K.Control of crystallization processes by means of magnetic fields[J]. J. Cryst. Growth, 1981, 52: 524 | [76] | Liu T, Wang Q, Zhang C, et al.Formation of chainlike structures in an Mn-89.7wt.%Sb alloy during isothermal annealing process in the semisolid state in a high magnetic field[J]. J. Mater. Res., 2009, 24: 2321 | [77] | Lou C S, Wang Q, Liu T, et al.Effects of a high magnetic field on the coarsening of MnBi grains solidified from isothermal annealed semi-solid melt[J]. J. Alloys Compd., 2010, 505: 96 | [78] | Ma Y W, Wang Z T. To enhance Jc of Bi-2223 Ag-sheathed superconducting tapes by improving grain alignment with magnetic field [J]. Physica, 1997, 282-287C: 2619 | [79] | Chen K, Maheswaran B, Liu Y P, et al.Critical current enhancement in field-oriented YBa2Cu3O7-δ[J]. Appl. Phys. Lett., 1989, 55: 289 | [80] | Farrell D E, Chandrasekhar B S, De Guire M R, et al. Superconducting properties of aligned crystalline grains of Y1Ba2Cu3O7-δ[J]. Phys. Rev., 1987, 36B: 4025 | [81] | Stassen S, Cloots R, Vanderbemden P, et al.Magnetic alignment in 2212 Bi-based superconducting system: Part I. Magnetic orientation of Bi2Sr2Ca1-x(RE)xCu2O8-y [(RE)=Gd, Dy, Ho, Er] powder dispersed in epoxy resin at room temperature[J]. J. Mater. Res., 1996, 11: 1082 | [82] | Tkaczyk J E, Lay K W.Effect of grain alignment and processing temperature on critical currents in YBa2Cu3O7-δ sintered compacts[J]. J. Mater. Res., 1990, 5: 1368 | [83] | Legrand B A, Chateigner D, De La Bathie R P, et al. Orientation of samarium-cobalt compounds by solidification in a magnetic field [J]. J. Alloys Compd., 1998, 275-277: 660 | [84] | Wang Q, Liu Y, Liu T, et al.Magnetostriction of TbFe2-based alloy treated in a semi-solid state with a high magnetic field[J]. Appl. Phys. Lett., 2012, 101: 132406 | [85] | Suresh S.Graded materials for resistance to contact deformation and damage[J]. Science, 2001, 292: 2447 | [86] | Bever M B, Duwez P E.Gradients in composite materials[J]. Mater. Sci. Eng., 1972, 10: 1 | [87] | Wang Q, Liu T, Gao A, et al.A novel method for in situ formation of bulk layered composites with compositional gradients by magnetic field gradient[J]. Scr. Mater., 2007, 56: 1087 | [88] | Wagne C N J. Liquid Metals[M]. New York: Marcel Dekker, 1972: 461 | [89] | Steinberg D J.A simple relationship between the temperature dependence of the density of liquid metals and their boiling temperatures[J]. Metall. Trans., 1974, 5: 1341 | [90] | Liu T, Wang Q, Gao A, et al.Distribution of alloying elements and the corresponding structural evolution of Mn-Sb alloys in high magnetic field gradients[J]. J. Mater. Res., 2010, 25: 1718 | [91] | Gao P F, Liu T, Dong M, et al.Magnetostrictive gradient in Tb0.27Dy0.73Fe1.95 induced by high magnetic field gradient applied during solidification[J]. Funct. Mater. Lett., 2016, 9: 1650003 | [92] | Dong M, Liu T, Liao J, et al.In situ preparation of symmetrically graded microstructures by solidification in high-gradient magnetic field after melt and partial-melt processes[J]. J. Alloys Compd., 2016, 689: 1020 | [93] | Clark A E, Cullen J R, Sato K.Magnetostriction of single crystal and polycrystal rare earth-Fe2 compounds[J]. AIP Conf. Proc., 1975, 24: 670 | [94] | Clark A E, Wun-Fogle M.Modern magnetostrictive materials: Classical and nonclassical alloys [A]. Proceedings of SPIE Volume 4699, Smart Structures and Materials 2002: Active Materials: Behavior and Mechanics[C]. San Diego, California: SPIE, 2002, 4699: 421 | [95] | Savitsky E M, Torchinova R S, Turanov S A.Effect of crystallization in magnetic field on the structure and magnetic properties of Bi-Mn alloys[J]. J. Cryst. Growth, 1981, 52: 519 | [96] | Beaugnon E, Bourgault D, Braithwaite D, et al.Material processing in high static magnetic field. A review of an experimental study on levitation, phase separation, convection and texturation[J]. J. Phys. I France, 1993, 3: 399 | [97] | Gaucherand F, Beaugnon E. Magnetic texturing in ferromagnetic cobalt alloys [J]. Physica, 2004, 346-347B: 262 | [98] | Gaucherand F, Beaugnon E. Magnetic susceptibility of high-Curie-temperature alloys near their melting point [J]. Physica, 2001, 294-295B: 96 | [99] | Wang Q, Lou C S, Liu T, et al.Fabrication of MnBi/Bi composite using dilute master alloy solidification under high magnetic field gradients[J]. J. Phys., 2009, 42D: 025001 | [100] | Liu T, Liu Y, Wang Q, et al.Microstructural, magnetic and magnetostrictive properties of Tb0.3Dy0.7Fe1.95 prepared by solidification in a high magnetic field[J]. J. Phys., 2013, 46D: 125005 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|